목차
차례
제1장 미분방정식의 기초와 일계미분방정식
1.1 미분방정식의 기초와 응용 / 2
1.2 변수분리형 미분방정식 / 11
1.3 완전미분방정식과 적분인수 / 17
1.4 일계 선형미분방정식 / 23
1.5 일계미분방정식의 응용 / 28
1.6 해의 존재성과 유일성 / 35
제2장 선형미분방정식
2.1 n계 선형미분방정식 / 42
2.2 이계 동차선형미분방정식 / 44
2.3 기저, 일반해, 초기값 문제 / 48
2.4 계수축소법 / 57
2.5 상수계수 이계 동차선형미분방정식 / 60
2.6 미분연산자 / 68
2.7 동차선형미분방정식의 응용 / 71
2.8 Euler-Cauchy 방정식 / 82
2.9 n계 동차선형미분방정식 / 87
2.10 상수계수 ?계 동차선형미분방정식 / 91
2.11 비동차선형미분방정식 / 94
2.12 이계 비동차선형미분방정식의 해법 / 96
2.13 비동차미분방정식의 응용 / 105
제3장 연립미분방정식, 상평면, 안정성
3.1 연립미분방정식 / 119
3.2 상평면 / 128
3.3 임계점, 안정성 / 135
제4장 미분방정식의 거듭제곱급수 해법
4.1 거듭제곱급수 해법의 이론적 기초 / 149
4.2 미분방정식 거듭제곱급수 해법 / 157
4.3 거듭제곱급수 해법의 확장 / 165
4.4 Bessel 방정식 / 182
4.5 직교함수계 / 194
제5장 Laplace 변환
5.1 Laplace 변환식, 역변환, 선형성 / 200
5.2 도함수와 적분의 Laplace 변환식과 초기값 문제/ 208
5.3 ? -축상에서의 이동, ?-축상에서의 이동,
단위계단함수 / 217
5.4 변환식의 미분과 적분 / 232
5.5 대합 / 237
5.6 부분분수 / 244
5.7 주기함수, 응용 / 256
5.8 Laplace 변환식의 표 / 263
제6장 Fourier 급수
6.1 주기함수와 삼각급수 / 268
6.2 Fourier 급수 / 272
6.3 Fourier cosine과 sine 급수 / 284
6.4 Fourier 급수의 응용 / 291
제7장 편미분방정식
7.1 편미분방정식 소개 / 296
7.2 열 방정식 / 299
7.3 열 방정식의 최대원리 / 301
7.4 1차원 열 방정식: 변수분리법 / 305
7.5 무한히 긴 막대에서의 열전도 / 310
7.6 Laplace 방정식 / 314
7.7 파동 방정식 / 318
7.8 1차원 파동 방정식: 변수분리법 / 322
부록
연습문제 해답 / 330
찾아보기 / 345