◈ 이 책의 대상 독자 ◈
이 책은 두 가지 부류의 독자를 대상으로 한다. 첫째, 투자 및 자산 운용을 목표로 계량 금융을 공부하고자 하는 대학원생이다. 두 번째 대상은 머신러닝에 기반한 자산배분 방법으로 피벗(pivot)하거나 단순히 이러한 새로운 도구에 관심이 있으면서 자신의 역량을 업그레이드하고자 하는 자산 운용 업계의 전문가다. 이 책은 최근 자산 가격 결정 문제와 자산 운용에 적용 가능한 머신러닝 알고리듬에 대한 광범위한 참고 자료가 필요한 학자나 연구자에게도 도움을 줄 수 있다. 대부분 일반적인 방법을 다루고 있지만 인과 그래프(14장), 베이지안 가법성 트리(9장), 하이브리드 오토인코더(7장)와 같은 좀 더 이색적인 모델을 구현하는 방법도 보여준다.
이 책은 대수학(algebra)(행렬 조작), 해석학(analysis)(함수 미분, 그래디언트), 최적화(optimization)(1계 및 2계 조건, 이중 형태), 통계학(statistics)(분포, 적률, 검정, 최우도 같은 간단한 추정 방법)에 대한 기본 지식이 있는 독자를 대상으로 한다. 최소한의 금융 도메인 지식도 필요하다. 주식과 회계 수치(예를 들어, 장부가)와 같은 간단한 개념은 따로 정의하지 않는다.
◈ 이 책의 구성 ◈
1부에서는 준비 자료를 수집하고 표기법과 데이터 표현(1장)으로 시작해 개요(2장)를 소개한다. 3장에서는 팩터 투자의 (이론적이고 실증적인) 경제학적 기초를 개괄하고 관련된 최근 문헌을 간략히 요약한다. 4장에서는 데이터 준비에 대해 다룬다. 기본적인 팁을 빠르게 리뷰하고 몇 가지 주요 이슈에 대해 경고한다.
2부에서는 지도 학습의 예측 알고리듬을 다룬다. 이러한 알고리듬은 수익률, 변동성, 샤프Sharpe 비율 등 금융 수치를 예측하는 데 사용되는 가장 일반적인 도구다. 페널티가 적용된 회귀(5장)부터 트리 기법(6장), 신경망(7장), 서포트 벡터 머신(8장), 베이지안 접근법(9장)까지를 아우르는 다양한 알고리듬을 다룬다.
3부에서는 이러한 도구와 금융 응용 분야 간의 간극을 해소한다. 10장에서는 앞서 정의한 머신러닝 엔진을 평가하고 개선하는 방법을 자세히 설명한다. 11장에서는 모델을 결합하는 방법과 그것이 종종 좋은 생각이 아닐 수도 있는 이유를 설명한다. 마지막으로, 가장 중요한 장 중 하나인 12장에서는 포트폴리오 백테스팅의 중요한 단계들을 검토하고 이 단계에서 자주 발생하는 실수에 대해 언급한다.
4부에서는 머신러닝과 관련된 다양한 고급 주제를 보다 구체적으로 다룬다. 첫 번째 주제는 해석 가능성(interpretability)이다. 머신러닝 모델은 종종 블랙박스로 간주되며, 이는 신뢰 문제를 야기한다. 머신러닝 기반 예측을 어떻게 신뢰할 수 있으며 왜 신뢰해야 할까? 13장에서는 내부에서 무슨 일이 일어나고 있는지 이해하는 데 도움이 되는 방법을 제시한다. 14장에서는 상관관계보다 훨씬 더 강력한 개념이자 최근 인공지능(AI, Artificial Intelligence) 분야에서 많은 논의의 핵심이 되는 인과성(causality)에 초점을 맞춘다. 대부분의 머신러닝 도구는 상관관계 같은 패턴에 의존하는데, 인과성과 관련된 기술의 이점을 강조하는 것이 중요하다. 마지막으로, 15장과 16장에서는 지도 학습이 아닌 다른 학습 방식에 대해 다룬다. 지도 학습이 아닌 다른 학습 방식은 유용할 수 있지만, 이것을 금융 분야에 적용할 때는 현명하고 신중하게 접근해야 한다.
◈ 옮긴이의 말 ◈
이제 머신러닝을 활용하는 것은 금융투자업의 영역에서도 필수적인 사항이 됐다. 왜냐하면 머신러닝은 빅데이터상에서 우리 인간이 쉽사리 탐지하기 어려운 복잡한 비선형 패턴을 발견해 새로운 투자 인사이트나 전략에 대한 힌트를 제공할 수 있기 때문이다. 물론 한편으로 이는 새로운 위험 요인으로 작용한다. 특히 신호 대 잡음비가 낮으며 동시에 비정상성을 지닌 금융 시계열 데이터의 영역에서 머신러닝을 맹목적으로 사용한다면 표본 외에서 실질적인 금전적 손실을 입을 확률이 매우 높다. 즉, 이를 부주의하게 잘못 사용한다면 그 대가는 매우 클 수 있다.
이런 맥락에서 이 책은 처음부터 금융 머신러닝은 절대로 만능이 아님을 주장하며 동시에 그 사용에 있어 굉장한 주의가 필요함을 설파한다. 금융 머신러닝을 이야기하는 책들 중에서 금융 머신러닝의 위험성부터 먼저 제시하는 책은 거의 유일하다고 할 수 있다. 사실 이러한 식견은 금융 머신러닝이라는 분야를 굉장히 깊게 다뤄보지 않았다면 나올 수가 없는 생각이다. 그만큼 두 저자는 금융시장과 퀀트 그리고 머신러닝 영역에서의 전문성을 바탕으로 금융 머신러닝을 ‘올바르게’ 활용하는 방법을 알려준다.
또한, 데이터 처리에서 시작해 알파 신호 생성, 포트폴리오 최적화 및 백테스팅, 나아가서는 인과성과 해석성에 이르기까지 머신러닝에 기반한 팩터 투자를 하기 위해 필요한 모든 재료를 다루며, 이것들을 보다 거시적인 관점에서 조망한다. 다시 말해, 금융 머신러닝을 배우고자 하는 이들에게 어떤 단계에서 어떤 적절한 절차를 따라야 하는가를 일목요연하게 정리해놓은 한 권의 실무 매뉴얼이다.
더불어 각 장별로 각각의 모델을 실제로 구현해볼 수 있는 파이썬 코드들이 수록돼 있으며 이를 바탕으로 한 연습 문제들이 있다. 이러한 파이썬 실습은 독자들이 파이썬 코드를 직접 구현해보면서 머릿속으로만 이해했던 추상적인 모델들을 보다 직관적으로 이해하고 받아들일 수 있도록 돕는다. 이처럼 이론적 지식과 실무적 응용 사이의 갭을 효과적으로 메우고 있으며, 독자들이 머신러닝 기법을 팩터 투자에 적용할 때 필요한 견고한 사고 체계의 틀을 제시한다.