장바구니 담기 close

장바구니에 상품을 담았습니다.

AI 딥 다이브

AI 딥 다이브

  • 오카노하라 다이스케
  • |
  • 한빛미디어
  • |
  • 2024-07-30 출간
  • |
  • 320페이지
  • |
  • 188 X 257mm
  • |
  • ISBN 9791169212717
판매가

27,000원

즉시할인가

24,300

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
24,300

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

과거와 현재의 AI 좌표를 확인하고 미래로 향하는 길 전망하기

이 책은 2015년부터 일본 잡지 〈닛케이 로보틱스〉에 연재된 글을 모아 편집한 것으로, AI 분야의 최신 발전과 주요 연구 결과를 신속하고 깊이 있게 다룹니다. 저자는 최근 AI 기술 발전의 특징으로 속도, 무경계성, 창의성을 꼽았으며, 이러한 특징들이 책 전반에 걸쳐 잘 반영되어 있습니다.

내용은 1) 지능과 딥러닝의 본질, 2) 학습 기법, 3) 모델과 아키텍처, 4) 애플리케이션의 4개 부(Part)로 구성되어 있습니다. 각 부마다 상세 주제를 여러 장(chapter)에 나눠 다루는데, 딥러닝의 기본 원리부터 강화학습, 생성모델, 이미지, 음성, 언어 처리 등 다양한 응용 분야에 이르기까지 폭넓게 설명합니다.

AI와 딥러닝에 대한 기초적인 이해부터 최신 연구 동향까지 포괄적으로 다루는 책인 만큼, 초보자부터 전문가에 이르기까지 다양한 독자층에게 유용한 정보를 제공합니다. 특히 이론적 설명과 함께 실제 적용 사례를 풍부하게 포함하고 있어, 독자들이 AI 기술의 실질적인 활용 방법을 이해하는 데 도움을 줍니다.

이 책의 가치는 여러 업계 전문가들의 추천사를 통해 더 크게 드러납니다. AI 기술의 기초부터 심화 내용까지 체계적으로 다루고 있으므로, AI 시대를 준비하는 모든 이에게 필수적인 가이드가 될 것입니다. 또한, AI의 기본 개념을 이해한 독자들이 더 깊이 있는 연구를 진행하는 데 필요한 가교 역할을 할 것으로 기대됩니다.

목차

[1부: 지능이란 무엇인가, 딥러닝이란 무엇인가]

1장: 인공지능의 원리 해명
_1.1 딥러닝 모델 학습이 잘 되는 이유
_1.2 매니폴드 가설: 현실 세계 데이터의 모델링 기법
_1.3 딥러닝이 일반화되는 이유
_1.4 독립 성분 분석: 정보 얽힘 풀기
_1.5 딥러닝 이론 해석, 신경망 미해결 문제 해명을 향한 진전
_1.6 과다 파라미터 표현 신경망과 복권 가설
_1.7 인과와 상관: 미지의 분포에 대한 일반화 가능성
_1.8 대칭성이 학습에 활용되는 방식
_1.9 머신러닝의 새로운 거듭제곱 법칙: 모델이 클수록 일반화 능력과 샘플 효율 향상
_1.10 강건한 모델의 과다 파라미터 표현 필요성

2장: 사람의 학습
_2.1 뇌의 오차 역전파 여부
_2.2 뇌의 학습 시스템

[2부: 학습 기법]

3장: 학습 기법
_3.1 학습의 엔진: 수리 최적화 Adagrad, RMSProp, Adam
_3.2 랜덤 푸리에 피처 함수: 규모가 큰 문제에도 커널 기법 적용 가능
_3.3 정규화: 일반화 능력 얻기
_3.4 오차 역전파 기법에 의한 기댓값 최대화
_3.5 오차 역전파를 사용하지 않는 학습 기법: Feedback Alignment, Synthetic Gradient, Target Prop
_3.6 연속 학습: 과거의 학습 결과를 잊지 않고 새로운 작업 학습
_3.7 예측 학습
_3.8 진화 전략
_3.9 메타 학습: 학습 방법을 학습하는 MAML과 뉴럴 프로세스
_3.10 음함수 미분: 경삿값 계산에서 계산 그래프를 워프
_3.11 비지도 표현 학습: 다른 뷰 간 상호 정보량 최대화
_3.12 지식 증류: 거대 모델의 지식 추출
_3.13 마스크 오토인코더: 이미지 인식에서 사전 학습 혁명의 가능성

4장: 강화 학습
_4.1 강화 학습: 피드백으로부터 최적 행동 획득
_4.2 월드 모델: 상상 속에서의 학습 가능성
_4.3 안전이 보장되는 강화 학습: 랴푸노프 함수로 제약을 만족시키는 폴리시 도출
_4.4 미래 예측에 기반한 플래닝, 학습화 시뮬레이터와 몬테카를로 트리 탐색
_4.5 오프라인 강화 학습: 데이터 주도형 학습

5장: 고속화, 저전력화, 인프라
_5.1 심층 신경망 학습의 고속화 가능성
_5.2 모바일향 신경망: 추론 시 전력 효율 향상 3가지 방안
_5.3 AI 연구의 뼈아픈 교훈
_5.4 MN-3/MN-Core: 세계 최고의 저소비전력 슈퍼컴퓨터

[3부: 모델과 아키텍처]

6장: 생성 모델
_6.1 적대적 생성 신경망: 신경망을 경합시켜 생성 모델 단련
_6.2 VW: 재귀 확률적 신경망에 의한 생성과 인식 수행
_6.3 Glow: 가역적 생성 모델, GAN보다 안정적으로 학습 가능한 가능도 기반 기법
_6.4 셀프 어텐션 메커니즘: 이미지 생성, 기계 번역 등 많은 문제에서 최고 정확도 달성
_6.5 연속 다이내믹스 표현 가능 신경망
_6.6 정규화 계층: 신경망 학습의 안정화, 고속화, 일반화
_6.7 에너지 기반 모델: 노이즈 복원을 통한 생성 모델 학습
_6.8 트랜스포머: 모든 작업의 표준 네트워크 아키텍처가 될 가능성
_6.9 이산화 생성 모델
_6.10 Perceiver: 다양한 입출력에 대응 가능한 신경망

7장: 기억의 얼개
_7.1 Fast Weight: 어텐션으로 단기 기억 실현
_7.2 미분 가능 신경 컴퓨터: 외부 기억을 갖춘 신경망

[4부: 애플리케이션]

8장: 이미지
_8.1 이미지 인식에서 높은 성과를 올린 CNN: 분류 오류가 매년 절반 가까이 감소
_8.2 GLOM:파싱 트리에 의한 이미지 인식의 실현 가능성

9장: 음성
_9.1 웨이브넷: 자연스러운 음성 및 음악 생성을 위한 신경망

10장: 공간생성/인식
_10.1 Generative Query Network: 이미지로부터 3차원 구조를 이해하여 생성
_10.2 자기 지도 학습에 의한 깊이와 자기 이동 추정
_10.3 3차원 형상 표현 기법
_10.4 이미지로부터 3차원 장면 이해: 국소 피처량 기반 이미지 매칭
_10.5 사람이나 동물의 공간 이해 메커니즘의 AI 활용 가능성
_10.6 Rotation Averaging: 빠르고 최적인 자세 추정 실현
_10.7 DROID-SLAM: 순차적 수정으로 환경에 대응
_10.8 NDF: 적은 지도 학습 데이터로 학습 가능한 물체나 3차원 환경의 동변 표현

11장: 언어
_11.1 seq2seq:텍스트에서 텍스트를 생성하는 신경망
_11.2 언어의 창발: 기계 간 커뮤니케이션 가능성
_11.3 자유로운 말로 로봇에게 지시
_11.4 BERT: 언어 이해의 사전 학습

12장: 제어
_12.1 확률적 제어: 부정확한 제어가 돕는 학습
_12.2 온라인 학습과 최적 제어, 미지의 노이즈에도 강건한 제어 기법

13장: 시뮬레이션
_13.1 AI에 의한 시뮬레이션의 진화
_13.2 시뮬레이션 기반 추론: 관측으로부터 귀납적 파라미터 추정
_13.3 딥러닝을 사용하는 물리 시뮬레이션 고속화
_13.4 매틀란티스: AI를 사용한 범용 원자 레벨 시뮬레이터

14장: 게임
_14.1 알파고: CNN과 강화 학습을 조합한 컴퓨터 바둑
_14.2 알파고 제로: 제로 베이스에서 학습하여 인간을 초월
_14.3 알파스타: 다양성이 있는 학습 환경에서 고도의 스킬 획득

15장: 바이오 생명 과학
_15.1 알파폴드: 50년간의 생명 과학 그랜드 챌린지 해결

16장: 로봇
_16.1 전자동 정리 로봇 시스템 개발. 고정밀도 객체 인식 기반 정리
_16.2 도메인 무작위화

참고 문헌
찾아보기

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.