장바구니 담기 close

장바구니에 상품을 담았습니다.

LangChain으로 구현하는 LLM

LangChain으로 구현하는 LLM

  • 벤 아우파스
  • |
  • 에이콘출판
  • |
  • 2024-03-29 출간
  • |
  • 408페이지
  • |
  • 188 X 235 X 19mm
  • |
  • ISBN 9791161758350
판매가

35,000원

즉시할인가

31,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
31,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

◈ 이 책에서 다루는 내용 ◈

◆ LLM을 이해하고 강점 및 한계 파악
◆ 생성형 AI의 기본 원리와 산업 동향 이해
◆ LangChain을 사용해 질문 응답 시스템 및 챗봇과 같은 LLM 앱 개발
◆ 트랜스포머 모델과 어텐션 메커니즘 이해
◆ Pandas와 파이썬을 사용해 데이터 분석 및 시각화 자동화
◆ 성능 향상을 위한 프롬프트 공학 이해
◆ LLM을 미세 조정하고 능력을 발휘하기 위한 도구 이해
◆ LangChain을 사용해 LLM을 서비스로 배포하고 평가 전략 적용
◆ 데이터 누출을 방지하기 위해 오픈 소스 LLM을 사용해 문서와 개인적으로 상호 작용 방법


◈ 이 책의 대상 독자 ◈

개발자, 연구자 그리고 LLM에 대해 더 알고 싶어하는 모든 사람이 대상으로 하는 책이다. 명확하고 간결하게 작성됐으며, 실습을 통해 학습할 수 있도록 다양한 코드 예제를 갖추고 있다.
초보자든 경험이 많은 개발자든, LLM과 LangChain을 최대한 이해하고 이 분야의 최신 동향을 선도하고자 하는 모든 이에게 가치 있는 자원이 될 것이다.


◈ 이 책의 구성 ◈

1장, ‘생성형 AI란 무엇인가?’에서는 생성형 AI가 텍스트, 이미지 그리고 비디오 처리를 혁신적으로 변화시키는 데 어떻게 핵심적인 역할을 하는지 설명한다. LLM과 같은 생성 모델을 소개하며, 이들의 기술적 기반과 다양한 분야에서의 변혁적인 잠재력을 자세히 소개한다. 이러한 모델의 이론적 배경, 신경망, 훈련 접근 방법 그리고 인간과 유사한 콘텐츠 생성에 대해 강조하고 다룬다. 또한 인공지능의 진화, 트랜스포머(Transformer) 아키텍처, 스테이블 디퓨전(Stable Diffusion)과 같은 텍스트에서 이미지로의 모델 그리고 음성과 비디오 응용에 대한 내용도 살펴본다.
2장, ‘LLM 응용을 위한 LangChain’에서는 LLM의 확률적 앵무새, 즉 진정한 이해 없이 언어를 모방하는 모델을 넘어설 필요성을 강조하고, 이를 위해 LangChain의 프레임워크를 활용한다. 낡은 지식, 행동 제한 그리고 환각의 위험과 같은 한계를 다루며, LangChain이 외부 데이터와 개입을 통합해 더 일관된 AI 애플리케이션을 어떻게 구현하는지 강조한다. 2장은 확률적 앵무새의 개념에 비판적으로 관여해, 유창하지만 의미 없는 언어를 생성하는 모델의 결핍을 소개하고 프롬프팅, 사고 과정 체인, 검색 기반의 논리가 어떻게 LLM을 강화해 맥락, 편향 그리고 불투명성과 관련된 문제를 해결하는지 설명한다.
3장, ‘LangChain으로 시작하기’에서는 이 책의 모든 예제를 실행하기 위해 환경을 설정하는 데 필요한 기본 지식을 제공한다. Docker, Conda, Pip, Poetry 설치 안내부터 시작하며, OpenAI의 ChatGPT와 Hugging Face와 같은 다양한 공급업체로부터 모델을 통합하는 방법과 필요한 API 키를 얻는 과정을 설명한다. 또한 오픈 소스 모델을 로컬에서 실행하는 방법도 다룬다. 아울러 LangChain을 사용해 고객 서비스 에이전트를 지원하는 LLM 앱을 만들어 LangChain이 작업을 간소화하고 응답의 정확도를 향상시킬 수 있는 예시를 보여준다.
4장, ‘능력 있는 비서 구축’에서는 LLM을 신뢰할 수 있는 비서로 변환하는 데에 관여해, 잘못된 정보를 줄이기 위해 사실 확인을 진행하고, 요약을 위한 정교한 프롬프팅 전략을 사용하며, 향상된 지식을 위해 외부 도구를 통합한다. 정보 추출을 위한 밀도 체인(Chain of Density)을 탐구하고 LangChain 데코레이터와 표현 언어에 대한 논의를 통해 사용자 맞춤형 행동을 정의하는 방법을 설명한다. 또한 LangChain에서 긴 문서를 처리하기 위한 맵 리듀스(map-reduce)를 소개하고, API 사용 비용을 관리하기 위한 토큰 모니터링에 대한 내용도 다룬다.
이 부분은 Streamlit 애플리케이션을 구현해 대화형 LLM 애플리케이션을 만들고, 함수 호출과 도구 사용을 통해 기본 텍스트 생성을 뛰어넘는 것에 중점을 두고 있다. “plan-and-solve” 및 “제로샷(zero-shot)”이라는 두 가지 명확한 에이전트 패러다임을 구현해 의사 결정 전략을 시연하는 데 사용된다.
5장, ‘ChatGPT 같은 챗봇 구축’에서는 ChatGPT와 같은 챗봇의 능력을 향상시키기 위해 검색 증강 생성과 같은 방법을 다룬다. 이 방법은 LLM에 외부 지식에 접근할 수 있는 기능을 제공해 정확성과 도메인 특화 능력을 향상시킨다. 특히 문서 벡터화, 효율적인 색인화, Milvus와 Pinecone과 같은 벡터 데이터베이스를 사용한 의미적 검색 등을 알아본다. 책에서는 챗봇을 구현하면서 책임 있는 의사 소통을 보장하기 위해 모더레이션 체인(moderation chains)을 포함시켰다. 이 챗봇은 깃허브에서 사용 가능하며, 대화 메모리(memory) 및 컨텍스트 관리와 같은 고급 주제를 탐구하는 기반 자료로 사용된다.
6장, ‘생성형 AI를 이용한 소프트웨어 개발’에서는 소프트웨어 개발에서 부상하는 LLM의 역할을 조사하며, AI가 코딩 작업을 자동화하고 동적 코딩 비서로서의 역할 가능성을 강조한다. AI 기반 소프트웨어 개발의 현재 상태를 탐구하고, 코드 일부를 생성하기 위한 모델 실험을 진행하며, LangChain을 사용한 자동 소프트웨어 개발 에이전트를 위한 디자인을 소개한다. 에이전트의 성능에 대한 비판적인 고찰은 실수 완화 그리고 고수준 디자인을 위한 인간 감독(human oversight)의 중요성을 강조하며, AI와 인간 개발자가 상호 작용하는 미래를 준비한다.
7장, ‘데이터 과학을 위한 LLM’에서는 생성형 AI와 데이터 과학의 공통점을 탐색하며, LLM이 생산성을 향상시키고 과학적 발견을 촉진할 수 있는 잠재력에 초점을 맞춘다. AutoML을 통한 데이터 과학의 현재 자동화 범위에 대한 개요를 제공하고, 이를 확장해 LLM에 통합해 데이터셋 보강과 실행 가능한 코드 생성 등의 고급 작업을 수행하는 개념을 소개한다. LLM이 탐색적 데이터 분석, SQL 쿼리 실행, 통계 데이터 시각화를 수행하는 실용적인 방법을 다룬다. 마지막으로 에이전트와 도구 사용을 이용해 LLM이 복잡한 데이터 중심 질문에 대응하는 방법을 보여준다.
8장, ‘LLM 사용자 정의 및 그 출력’에서는 미세 조정(fine-tuning)과 프롬프팅(prompting)과 같은 조건화 기술을 살펴본다. 이는 LLM의 성능을 복잡한 추론과 특수 작업에 맞게 조정하는 데 필수적이다. 미세 조정은 LLM이 작업별 데이터로 더 많은 훈련을 받는 것을 다루며, 프롬프트 공학(prompt engineering)은 LLM을 원하는 출력을 생성하도록 전략적으로 안내한다. 퓨샷(few-shot) 러닝과 사고 체인(chain-of-thought)과 같은 고급 프롬프팅 전략이 구현돼 LLM의 추론 능력을 향상시킨다. 미세 조정과 프롬프팅에 관한 구체적인 예제뿐만 아니라 LLM의 미래 발전과 해당 분야에서의 응용에 대해서도 설명한다.
9장, ‘생성형 AI 제품화’에서는 LLM을 실제 애플리케이션 내에서 배치하는 데 있어서의 복잡성과 함께 성능 보장, 규제 요구 사항 충족, 규모에 대한 강건성 및 효과적인 모니터링을 위한 모범 사례를 다룬다. 평가, 관측 가능성과 체계적인 운영의 중요성을 강조해 생성형 AI가 고객 참여와 재정적 영향이 있는 의사 결정에서 유용하게 사용될 수 있도록 한다. 또한 Fast API, Ray, LangServe, LangSmith와 같은 도구를 사용해 LLM 앱의 배포와 지속적인 모니터링에 대한 실용적인 전략에 대한 개요를 설명한다. 이러한 도구는 다양한 분야에서 생성형 AI의 책임 있는 채택을 지원하는 자동 평가와 분석을 제공할 수 있다.
10장, ‘생성형 모델의 미래’에서는 생성형 AI의 잠재적인 발전과 사회 기술적 도전에 대해 다룬다. 10장은 이러한 기술이 경제와 사회에 미치는 영향을 검토하며 직업 이동, 잘못된 정보 그리고 인간 가치 조정과 같은 윤리적 고민을 살펴본다. 다양한 분야에서 AI가 유발한 혼란과 변화에 대비하는 가운데 기업, 법조인 그리고 기술자들이 효과적인 지배 프레임워크를 형성하는 책임에 대해 고찰한다. 이 마지막 장은 AI 개발을 인간 잠재력 증대로 이끄는 동시에 딥페이크, 편향 그리고 AI 무기화와 같은 위험에 대처해야 하는 중요성을 강조한다. 즉 투명성, 윤리적 배치, 공정한 접근을 이끌기 위한 촉박함을 강조한다.

◈ 옮긴이의 말 ◈

최근 주목받는 생성형 인공지능에 관한 책으로, 특히 LLM을 집중적으로 분석한다. LLM을 실질적으로 활용할 수 있는 여러 프레임워크 중 LangChain을 사용하는 방법을 자세히 소개한 책으로, 실용적인 LLM 활용 입문서라고 할 수 있다. 또한 LangChain을 활용한 생성형 AI의 실제적인 구현 예제는 물론 이미지, 음성 등 여러 분야에서 부각되고 있는 다양한 생성형 AI의 특징과 장단점, 현재 기술 수준 등에 대해 비교하고 설명해주는 개괄적인 입문서로 도움이 된다. 생성형 인공지능, 그중에서도 특히 LLM에 대한 전체 개괄을 빠르게 얻고자 하는 독자라면 이 책이 좋은 출발점이 될 것이다.

목차

1장. 생성형 AI란 무엇인가?
__생성형 AI 소개
____생성 모델이란 무엇인가?
____왜 지금인가?
__LLM의 이해
____GPT란 무엇인가?
____다른 LLM
____주요 플레이어
____GPT 모델은 어떻게 작동할까?
______사전 훈련
______토큰화
______스케일링
______조건화
____이러한 모델을 시험하는 방법
__텍스트 투 이미지 모델이란?
__다른 영역에서 AI가 할 수 있는 일
__요약
__문제


2장. LLM 응용을 위한 LangChain
__확률적 앵무새를 넘어서
____LLM의 한계는 무엇인가?
____LLM 한계를 완화하는 방법
____LLM 응용이란 무엇인가?
__LangChain이란 무엇인가?
__LangChain의 핵심 요소 탐색
____체인이란 무엇인가?
____에이전트는 무엇인가?
____메모리는 무엇인가?
____도구란 무엇인가?
__LangChain의 작동 원리
__LangChain과 다른 프레임워크와의 비교
__요약
__문제


3장. LangChain으로 시작하기
__이 책을 위한 종속성 설정 방법
____pip
____Poetry
____Conda
____Docker
__API 모델 통합 탐색
____Fake LLM
____OpenAI
____Hugging Face
____Google 클라우드 플랫폼
____Jina AI
____Replicate
____그 외
____Azure
____Anthropic
__로컬 모델 탐색
____Hugging Face Transformers
____llama.cpp
____GPT4ALL
__고객 서비스를 위한 애플리케이션 구축
__요약
__문제


4장. 능력 있는 비서 구축
__팩트 체크를 통한 환각 완화
__정보 요약
____기본 프롬프팅
____프롬프트 템플릿
____밀도의 체인
____맵 리듀스 파이프라인
____토큰 사용량 모니터링
__문서에서 정보 추출
__툴을 사용한 질문 응답
____툴을 사용한 정보 검색
____시각 인터페이스 구축
__추론 전략 탐색
__요약
__문제


5장. ChatGPT 같은 챗봇 구축
__챗봇이란 무엇인가?
__검색과 벡터의 이해
____임베딩
____벡터 저장소
______벡터 인덱싱
______벡터 라이브러리
______벡터 데이터베이스
__LangChain에서의 로딩 및 검색
____문서 로더
____LangChain에서 검색기
______kNN 검색기
______PubMed 검색기
______맞춤형 검색기
__챗봇 구현
____문서 로더
____벡터 저장소
____메모리
______대화 버퍼
______대화 요약 기억
______지식 그래프 저장
______여러 메모리 메커니즘의 병합
______장기 일관성
__응답 중재
__요약
__문제


6장. 생성형 AI를 이용한 소프트웨어 개발
__소프트웨어 개발과 인공지능
____코드 LLM
__LLM을 사용한 코드 작성
____StarCoder
____StarChat
____Llama 2
____소형 로컬 모델
__소프트웨어 개발 자동화
__요약
__문제


7장. 데이터 과학을 위한 LLM
__생성 모델이 데이터 과학에 미치는 영향
__자동화된 데이터 과학
____데이터 수집
____시각화와 탐색적 데이터 분석
____전처리와 특징 추출
____AutoML
__데이터 과학 질문에 답하기 위한 에이전트 사용
__LLM을 사용한 데이터 탐색
__요약
__질문


8장. LLM 사용자 정의 및 그 출력
__LLM 조건화
____조건화 기법
______사람 피드백을 가미한 강화학습
______저랭크 적응
______추론 시간 조건화
__미세 조정
____미세 조정 설정
____오픈 소스 모델
____상업용 모델
__프롬프트 공학
____프롬프트 기술
______제로샷 프롬프팅
______퓨샷 러닝
______사고-체인 프롬프팅
______자기 일관성
______사고 트리
__요약
__문제


9장. 생성형 AI 제품화
__LLM 앱의 제품화를 준비하는 방법
____용어
__LLM 앱을 평가하는 방법
____두 출력 비교
____기준 대비 비교
____문자열과 문맥 비교
____데이터셋을 대상으로 한 평가 수행
__LLM 앱을 배포하는 방법
____FastAPI 웹서버
____Ray
__LLM 앱을 관찰하는 방법
____관찰 반응
____관측성 도구
____LangSmith
____PromptWatch
__요약
__문제


10장. 생성형 모델의 미래
__생성 AI의 현 상태
____도전 과제
____모델 개발에서의 추세
____빅 테크 대 소기업
____인공 범용 지능
__경제적 결과
____창의적 산업과 광고
____교육
____법률
____제조
____의학
____군사
__사회적 함의
____오정보와 사이버보안
____규제와 실행의 어려움
__앞으로의 길

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.