장바구니 담기 close

장바구니에 상품을 담았습니다.

Data Analysis for Social Science

Data Analysis for Social Science

  • Haeil Jung
  • |
  • 윤성사
  • |
  • 2024-03-04 출간
  • |
  • 328페이지
  • |
  • 173 X 243mm
  • |
  • ISBN 9791193058237
판매가

25,000원

즉시할인가

22,500

배송비

2,300원

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
22,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

목차

Chapter 1 How do we examine our interests with data?: Distribution and mean
ㆍ Understanding our world with data
ㆍ Mapping what we want to study into numbers
ㆍ Less likely or more likely? Think about the probabilities of events
ㆍ Which group of subjects do we want to study?: The population of interest and the random sample
ㆍ Random sample assumption and sampling methods
ㆍ What useful information can we have from a sample?: sample mean and sample variance
ㆍ Normal distribution and its application: One of the most popular and useful distributions
ㆍ Alternative measures to mean: median and mode
ㆍ Chapter Summary
ㆍ Exercises

Chapter 2 Do more with the sample mean: Inference
ㆍ Sampling distribution of the sample mean and the Central Limit Theorem
ㆍ The confidence interval (CI) for the population mean μ
ㆍ Hypothesis test for the population mean μ
ㆍ How to choose an appropriate sample size in the survey for inference
ㆍ Chapter Summary
ㆍ Exercises

Chapter 3 Examining the relationship between the two quantitative variables I: Correlation coefficient and introduction to the OLS regression analysis
ㆍ Covarience and correlation coefficent
ㆍ Introduction to the OLS regression analysis
ㆍ Chapter Summary
ㆍ Exercises

Chapter 4 Examining the relationship between the two continuous variables II: Inference in the OLS regression analysis
ㆍ The normally of the error term and the sampling distribution of the OLS estimator
ㆍ The linear regression model when the sample size becomes larger
ㆍ The Confidence Interval (CI) for the regression parameter β1
ㆍ Hypothesis test for the regression parameter β1
ㆍ Chapter Summary
ㆍ Exercises

Chapter 5 Handling two or more explanatory variables in OLS regression analysis I: Multivariate Regression Analysis
ㆍ Partialling out and multicollinearity in multivariate regression analysis
ㆍ Omitted variable bias in the linear regression model
ㆍ Adding an explanatory variable and the efficiency of OLS estimators
ㆍ Chapter Summary
ㆍ Exercises

Chapter 6 Handling two or more explanatory variables in OLS regression analysis II: Hypothesis tests and more in Multivariate Regression Analysis
ㆍ Hypothesis tests in multivariable regression analysis
ㆍ Adjusted R-squared
ㆍ Chapter Summary
ㆍ Exercises

Chapter 7 The OLS regression analysis when comparing the outcomes of the two or more groups: Use of binary explanatory variables
ㆍ Estimating group differences in an outcome variable
ㆍ Estimating group differences in an outcome variable without the constant
ㆍ Estimating group differences using an interval variable
ㆍ Estimating group differences in a slope coefficient
ㆍ Estimating group differences in all explanatory variables
ㆍ Estimating the nonlinear relationship between an explanatory variable and an outcome variable
ㆍ Subsample analysis based on exogenous explanatory variables
ㆍ Chapter Summary
ㆍ Exercises

Chapter 8 Developing and completing the OLS regression analysis by using rescaling and functional specifications
ㆍ Rescaling of the outcome and explanatory variables
ㆍ Linearity in the OLS analysis
ㆍ Linear and nonlinear specifications in the OLS analysis
ㆍ Choosing specifications by considering three different types of causal paths
ㆍ General rules for including additional variables and making specifications in multivariate regression analysis
ㆍ Chapter Summary
ㆍ Exercises

Chapter 9 The OLS regression analysis when the variance of the error term depends on the explanatory variables: Heteroscedasticity
ㆍ Chapter Summary
ㆍ Exercises

Chapter 10 The regression analysis when the outcome variable is binary: LPM, Logit, and Probit
ㆍ Linear Probability Model (LPM): Using OLS when the outcome variable is binary
ㆍ The estimation of logit and probit models
ㆍ Statistical inference and goodness of it for probit and logit models
ㆍ Chapter Summary
ㆍ Exercises

Appendix
A. Software programs for data analysis: SPSS, SAS, Stata, R
B. How to do a reliable empirical study
C. z distribution table: standard normal curve tail probabilities
D. t distribution table: critical values of the t distribution
E. Chi-square distribution table: critical values of the Chi-square distribution
F. F distribution table: critical values of the F distribution

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.