장바구니 담기 close

장바구니에 상품을 담았습니다.

러닝 레이

러닝 레이

  • 막스 펌펄라
  • |
  • 한빛미디어
  • |
  • 2024-01-29 출간
  • |
  • 292페이지
  • |
  • 183 X 235mm
  • |
  • ISBN 9791169211949
판매가

25,000원

즉시할인가

22,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
22,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

파이썬에 쉽고 빠른 병렬화를 구현하는 레이를 만나다.
머신러닝 시스템은 훈련에 많은 양의 데이터를 사용하며 모델의 크기는 점점 커지고 있다. AI 시스템에 필요한 연산의 수가 초당 1000조 회를 넘어가는 시점에서 분산 컴퓨팅은 절대적으로 필요하다. 레이는 분산 컴퓨팅 전용 파이썬 라이브러리로, 간단한 코드 변경으로 빠른 병렬화와 확장 가능한 분산 처리를 지원한다. 소규모 작업부터 대규모 클러스터까지 다양한 규모에서 높은 성능을 제공하며, API의 범위도 유연해 다양한 상황에 사용할 수 있다. 특히 텐서플로나 파이토치 같은 라이브러리와의 통합을 지원해 데이터 과학자에게도 유용하다.
이 책은 레이를 사용해 강력한 분산 애플리케이션과 모델을 구축하는 방법을 소개한다. 독자가 직접 흥미로운 프로젝트를 구현하며, 레이를 구성하는 각 라이브러리의 기능과 적용 분야를 알 수 있도록 구성에 더 복잡한 상황에 레이를 적용할 자신감을 심어준다. 이 책을 통해 레이의 잠재력을 발견해 병렬화를 구현해보자.
대상 독자
● 데이터 과학과 머신러닝에 레이를 사용하려는 데이터 관련 종사자
● 파이썬으로 분산 컴퓨팅을 구현하는 방법이 궁금한 개발자

배우는 내용
● 하이퍼파라미터 최적화를 시행하는 레이 튠
● 강화학습을 수행하는 레이 RLlib
● 분산 훈련을 지원하는 레이 트레인
● 대용량 데이터를 처리하는 레이 데이터셋
● 머신러닝 애플리케이션을 구축하는 레이 AIR

이 책의 구성
1장부터 3장까지는 분산 파이썬 프레임워크로서의 레이를 살펴보며 실질적인 예시를 통해 기본적인 개념을 배웁니다. 4장부터 10장까지는 레이 RLlib, 레이 튠, 레이 데이터셋, 레이 트레인 등 레이 생태계를 구성하는 하이레벨 라이브러리를 알아보고, 이를 사용해 애플리케이션을 만드는 방법을 배웁니다. 마지막 장에서는 레이의 생태계에 대한 종합적인 개요와 더 나아가는 방법을 안내합니다.

옮긴이의 말
레이는 소프트웨어 레이어뿐 아니라 인프라 레이어까지도 빠르게 통합을 이루어내는 가장 훌륭한 분산 시스템 추상화입니다. 이 책을 읽으시는 여러분도 제가 발견한 레이의 잠재력과 가능성을 만나길 바라며, 지금까지 풀기 힘들었던 문제를 해결하는 계기가 되었으면 합니다.
김완수

목차

Chapter 1 레이 살펴보기
1.1 레이는 무엇인가?
_1.1.1 레이가 추구하는 목적
_1.1.2 레이의 디자인 철학
_1.1.3 레이의 3가지 계층: 코어, 라이브러리, 생태계
1.2 분산 컴퓨팅 프레임워크
1.3 데이터 과학 라이브러리
_1.3.1 데이터 과학 워크플로
_1.3.2 데이터 처리
_1.3.3 모델 학습
_1.3.4 하이퍼파라미터 튜닝
_1.3.5 모델 서빙
1.4 성장하는 생태계
1.5 요약

Chapter 2 레이 코어로 시작하는 분산 컴퓨팅
2.1 레이 코어 소개
_2.1.1 레이 API를 활용한 첫 번째 예시
_2.1.2 레이 API 개요
2.2 레이 시스템 컴포넌트
_2.2.1 노드에서 태스크 스케줄링 및 실행
_2.2.2 헤드 노드
_2.2.3 분산된 스케줄링과 실행
2.3 레이를 사용한 간단한 맵리듀스 예시
_2.3.1 매핑과 셔플
_2.3.2 단어 수 축소(리듀스 단계)
2.4 요약

Chapter 3 분산 애플리케이션 개발
3.1 강화학습 소개
3.2 간단한 미로 문제 설정
3.3 시뮬레이션 구현
3.4 강화학습 모델 훈련
3.5 레이 분산 애플리케이션 구축
3.6 강화학습 용어 요약
3.7 요약

Chapter 4 레이 RLlib을 활용한 강화학습
4.1 RLlib 개요
4.2 RLlib 시작하기
_4.2.1 Gym 환경 구축
_4.2.2 RLlib CLI
_4.2.3 RLlib 파이썬 API
4.3 RLlib 실험 구성
_4.3.1 리소스 구성
_4.3.2 롤아웃 워커 구성
_4.3.3 환경 구성
4.4 RLlib 환경
_4.4.1 RLlib 환경 개요
_4.4.2 다중 에이전트
_4.4.3 정책 서버와 클라이언트 작동
4.5 고급 개념
_4.5.1 고급 환경 구축
_4.5.2 커리큘럼 학습 적용
_4.5.3 오프라인 데이터 작업
_4.5.4 다른 고급 주제
4.6 요약

Chapter 5 레이 튠을 활용한 하이퍼파라미터 최적화
5.1 하이퍼파라미터 튜닝
_5.1.1 레이를 사용한 랜덤 서치
_5.1.2 HPO가 어려운 이유
5.2 튠 소개
_5.2.1 튠의 작동 방식
_5.2.2 튠의 구성과 실행
5.3 튠을 활용한 머신러닝
_5.3.1 튠을 활용한 RLlib
_5.3.2 케라스 모델 튜닝
5.4 요약

Chapter 6 레이 데이터셋을 활용한 데이터 분산 처리
6.1 레이 데이터셋
_6.1.1 레이 데이터셋 기초
_6.1.2 레이 데이터셋 연산
_6.1.3 데이터셋 파이프라인
_6.1.4 예시: 병렬 분류기 복사본 훈련
6.2 외부 라이브러리 통합
6.3 머신러닝 파이프라인 구축
6.4 요약

Chapter 7 레이 트레인을 활용한 분산 모델 훈련
7.1 분산 모델 훈련의 기초
7.2 예시를 통한 레이 트레인 소개
_7.2.1 뉴욕시 택시 승차 시 팁 예측
_7.2.2 로드, 전처리, 피처화
_7.2.3 딥러닝 모델 정의
_7.2.4 레이 트레인을 활용한 모델 훈련
_7.2.5 분산 배치 추론
7.3 레이 트레인의 트레이너
_7.3.1 레이 트레인으로 마이그레이션
_7.3.2 트레이너 스케일 아웃
_7.3.3 레이 트레인을 활용한 전처리
_7.3.4 트레이너와 레이 튠의 통합
_7.3.5 콜백을 사용한 학습 모니터링
7.4 요약

Chapter 8 레이 서브를 활용한 온라인 추론
8.1 온라인 추론의 주요 특징
_8.1.1 계산 집약적 머신러닝 모델
_8.1.2 고립된 상태에서 유용하지 않은 머신러닝 모델
8.2 레이 서브 소개
_8.2.1 아키텍처 개요
_8.2.2 기본 HTTP 엔드포인트 정의
_8.2.3 확장 및 리소스 할당
_8.2.4 요청 배치 처리
_8.2.5 멀티모델 추론 그래프
8.3 엔드 투 엔드 예시: 자연어 처리 기반 API 구축
_8.3.1 콘텐츠 가져오기 및 전처리
_8.3.2 NLP 모델
_8.3.3 HTTP 처리 및 드라이버 로직
_8.3.4 통합
8.4 요약

Chapter 9 레이 클러스터를 활용한 스케일링
9.1 수동으로 레이 클러스터 생성
9.2 쿠버네티스에 배포
_9.2.1 첫 번째 쿠브레이 클러스터 설정
_9.2.2 쿠브레이 클러스터와 상호작용
_9.2.3 쿠브레이 노출
_9.2.4 쿠브레이 구성
_9.2.5 쿠브레이 로깅 구성
9.3 레이 클러스터 런처
_9.3.1 레이 클러스터 구성
_9.3.2 클러스터 런처 CLI
_9.3.3 레이 클러스터와 상호작용
9.4 클라우드 클러스터
_9.4.1 AWS
_9.4.2 기타 클라우드 제공자
9.5 오토스케일링
9.6 요약

Chapter 10 레이 AIR로 구성하는 데이터 과학 워크플로
10.1 AIR를 사용하는 이유
10.2 예시로 살펴보는 AIR의 핵심
_10.2.1 레이 데이터셋과 전처리기
_10.2.2 트레이너
_10.2.3 튜너와 체크포인트
_10.2.4 배치 예측기
_10.2.5 배포
10.3 AIR에 적합한 워크로드
_10.3.1 AIR 워크로드 실행
_10.3.2 AIR 메모리 관리
_10.3.3 AIR 고장 모델
_10.3.4 AIR 워크로드 오토스케일링
10.4 요약

Chapter 11 레이 생태계와 그 너머
11.1 성장하는 생태계
_11.1.1 데이터 로드와 처리
_11.1.2 모델 훈련
_11.1.3 모델 서빙
_11.1.4 커스텀 통합
_11.1.5 레이 통합 개요
11.2 레이 외 시스템
_11.2.1 분산 파이썬 프레임워크
_11.2.2 레이 AIR와 더 넓은 생태계
_11.2.3 AIR를 머신러닝 플랫폼에 통합하는 방법
11.3 앞으로 살펴볼만한 주제
11.4 요약

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.