머신러닝 프로젝트 종사자 필독서!
다양한 예시, 이해를 돕는 순서도, 좋은 코드 작성법, 함정 회피법까지
머신러닝 개발 현장에서 터득한 노하우 대방출
프로젝트에 머신러닝을 도입해 프로덕션 수준으로 끌어올리기까지는 수많은 시행착오가 필요합니다. 그 시행착오 과정에서 길을 이끌어주는 훌륭한 가이드가 있다면 얼마나 든든할까요? 저자 벤 윌슨은 수많은 머신러닝 프로젝트를 직접 경험하며 온몸으로 터득한 노하우를 여러분에게 선보입니다. 비즈니스에 머신러닝을 도입할 때 마주하기 쉬운 함정을 피하는 방법과 일을 두 번 하지 않게 하는 계획 수립 전략, 협업 부서와의 현명한 소통법, 장기적으로 유지 관리 가능한 프로젝트 구현 방법, 배포 시 유념해야 할 사항들까지 머신러닝 프로젝트 설계 전반에 걸친 유용한 내용을 소개합니다. 이 책은 머신러닝 개발 현장에서 고군분투하고 있는 엔지니어뿐 아니라 데이터 과학자, 소프트웨어 아키텍트 등 머신러닝 프로젝트에 발을 담고 있는 모든 분에게 유용합니다. 이 책을 읽고 나면 각자의 역할을 더 잘 이해하고 업무를 더 효율적으로 요청하고 수행할 수 있을 것입니다.
주요 내용
● 머신러닝 프로젝트의 계획 수립과 범위 설정하기
● 설계에 적합한 기술 선택하는 방법 알아보기
● 코드 기반의 이해도, 유지 보수, 테스트 가능성 높이기
● 프로덕션의 품질을 높이는 고급 사항 살펴보기
장별 내용
● 1부(1장~8장): 팀장, 매니저, 프로젝트 리더 관점에서 ML 프로젝트의 관리 측면을 살펴봅니다. 설루션 구축 시 빠지기 쉬운 함정을 피할 수 있도록 범위 설정, 실험, 프로토타이핑에 대한 청사진을 제시하고, 포괄적인 피드백을 전달합니다.
● 2부(9장~13장): ML 프로젝트의 개발 프로세스를 다룹니다. ML 설루션 개발의 좋은 예시와 나쁜 예시를 비교하며 ML 설루션을 빌드하고 튜닝하는 방법, 그리고 로깅과 평가를 하는 검증된 방법을 안내해 가장 간단하고 유지 관리하기 쉬운 코드를 만드는 법을 소개합니다.
● 3부(14장~16장): 프로젝트의 프로덕션 배포, 재훈련, 모니터링 및 기여도와 관련한 고려 사항을 다룹니다. A/B 테스트와 피처 스토어, 재훈련 시스템 예제와 함께 시스템 구축과 아키텍처를 제공하며, 이를 통해 여러분은 비즈니스 문제를 ML로 해결하는 데 있어 최소한의 복잡성을 가지는 설루션을 구축할 수 있습니다.
대상 독자
● 머신러닝 엔지니어, 데이터 과학자, 소프트웨어 아키텍트 등 머신러닝 프로젝트 참여자
● 머신러닝 엔지니어링 설계 과정에서 어려움을 겪고 있는 분
● 머신러닝 엔지니어링을 활용해 무언가를 구축해보고 싶은 분
● 머신러닝 엔지니어링에 관심 있는 누구나