장바구니 담기 close

장바구니에 상품을 담았습니다.

줄리아 머신러닝, 딥러닝, 강화학습

줄리아 머신러닝, 딥러닝, 강화학습

  • 김태훈
  • |
  • 제이펍
  • |
  • 2023-10-06 출간
  • |
  • 396페이지
  • |
  • 188 X 245 X 19mm
  • |
  • ISBN 9791192987408
판매가

32,000원

즉시할인가

28,800

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
28,800

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

가장 빠르고 우아한 데이터 과학 최고의 언어를 만날 시간

줄리아는 파이썬 상위호환 언어로 평가받으면서 사용이 늘고 있다. 파이썬과 같이 동적 언어이면서도 C와 같은 정적 언어에 가까운 실행 속도를 보이며, 대부분의 라이브러리 역시 줄리아 코드로 작성되어 라이브러리의 코드를 수정하거나 디버깅하기가 매우 쉽다는 장점도 있다.

이 책은 줄리아의 우아한 언어 특성과 강력한 라이브러리 생태계를 활용해 전문가답게 인공지능 실무를 처리하는 방법을 알려준다. 언어 문법을 매뉴얼 형식으로 설명하는 대신, 타입 시스템, 다중 디스패치, 메서드 특화, 메타프로그래밍, 다차원 배열, 병렬 연산 등 실무 관점에서 알아야 할 줄리아의 코딩 스타일을 자세히 다룬다. 이어서 데이터 분석과 시각화에 쓰이는 라이브러리들(Tables.jl, DataFrames.jl, Query.jl, Plots.jl 등)과 환경 구성법을 살펴보고, 간단한 전처리 실습도 해본다. 특히 책 앞부분은 파이썬과 비교하는 예시로 파이썬 사용자의 줄리아 적응을 돕는다.

이후는 머신러닝, 딥러닝, 강화학습 영역의 일반적인 작업들에 대해 최신 알고리즘을 활용해 줄리아로 우아하게 실습해보는 시간이다. 줄리아의 과학적 타입이나 MLJ의 모델 합성을 활용하면 머신러닝 워크플로 자체가 얼마나 깔끔해지는지 체감할 수 있다. 플럭스를 사용하는 딥러닝 파트에서는 자동 미분과 함자를 설명한 다음, 컴퓨터 비전, 객체 탐지, NLP 등의 딥러닝 작업들을 실습한다. 파이토치나 텐서플로에 익숙한 독자가 쉽게 따라올 수 있게 구성했다. 끝으로 DQN, DDPG, SAC, A2C, PPO 등 강화학습 알고리즘을 줄리아로 구현해 카트폴 환경에서 결과를 확인해본다.

줄리아 문법 또는 인공지능 이론을 기초부터 하나씩 설명하는 책은 아니다. 그런 입문서들은 이미 시중에 있지만, 줄리아를 실제로 인공지능 실무에 활용해본 저자가 노하우를 담아 집필한 활용서는 이 책이 유일하다. 인공지능 실무에서 생산성을 높이고 싶다면 이 책이 가장 우아한 선택이 될 것이다.

주요 내용
● 타입 시스템, 다중 디스패치, 메서드 특화, 메타프로그래밍, 병렬 연산 등 줄리아의 강력한 언어 특성
● Tables.jl, DataFrames.jl, Query.jl, Plots.jl 등 줄리아 패키지를 활용한 데이터 분석 및 시각화
● 과학적 타입을 이용한 머신러닝 전처리, 학습, 예측, 평가, 튜닝 및 모델 합성 실무
● 플럭스를 사용한 컴퓨터 비전, 객체 탐지, NLP 등 딥러닝 작업 실습
● DQN, DDPG, SAC, A2C, PPO 강화학습 알고리즘 구현

목차

베타리더 후기 xii
이 책에 대하여 xvi

PART I 줄리아 언어

CHAPTER 1 기본 문법 3
1.1 변수 3
1.2 수치 타입 4
__정수 4 / 부동소수점 수 5
1.3 자료구조 6
__배열 6 / 튜플 6 / 명명된 튜플 7 / 딕셔너리 7
1.4 문자열 타입 7
1.5 복합 타입 9
1.6 기본 연산 10
1.7 함수 11
__함수 정의 및 호출 11 / 인수 기본값 12 / 가변 인수와 키워드 인수 12 / 익명 함수와 do 블록 13 / 함수 합성과 파이핑 14 / 벡터화용 dot 연산자 14 / 인수 전달 방식 14 / 객체 호출 함수 15
1.8 제어 흐름 15
__복합식 15 / 조건식 16 / 반복문 16 / 예외 처리 17
1.9 모듈 17
1.10 변수 영역 19
__전역 변수 19 / 함수의 지역 변수 19 / for, while, try 문의 지역 변수 20

CHAPTER 2 타입 시스템 23
2.1 동적 타입 23
2.2 추상 타입과 구체 타입 25
__줄리아 수 체계 25 / 추상 타입 27 / 원시 타입 27 / 복합 타입 28 / 변경 불가능성 30 / 행위의 상속 31
2.3 매개변수 타입 32
__UnionAll 타입 34 / 무공변성 34 / 매개변수 추상 타입 36
2.4 그 외 타입들 36
__싱글턴 타입 36 / Nothing 타입 37 / 함수 타입 37 / 튜플 타입 37 / 유니언 타입 38
2.5 타입 변환과 승격 38
__타입 변환 39 / 승격 40 / 사용자 정의 수 타입 41

CHAPTER 3 함수와 메서드 45
3.1 다중 디스패치 46
__다중 디스패치 작동 방식 47 / 다중 디스패치 내부 구현 49 / 인수 타입별로 최적화된 메서드 정의 50
3.2 메서드 특화 51
__컴파일 단계 52 / 복합 타입 인수 메서드의 특화 55 / 타입 시스템과 메서드 특화 57
3.3 성능 좋은 코드를 작성하는 법 57
__스크립트 대신 함수 작성 57 / 타입 명시된 전역 변수 활용 58 / 배열의 원소 타입은 구체 타입으로 58 / 복합 타입의 필드 타입은 구체 타입으로 59 / 타입 안정성 지키기 59

CHAPTER 4 메타프로그래밍 63
4.1 코드의 데이터 표현 63
__표현식 63 / 심벌 64 / 평가(실행) 65 / 내삽 65
4.2 코드 생성 65
4.3 매크로 68
__매크로 예제 68 / 이스케이핑 69 / 다시 가위바위보 70 / 유용한 매크로 72

CHAPTER 5 다차원 배열 75
5.1 다차원 배열의 특징 75
__열 우선 75 / 벡터화 불필요 78
5.2 다차원 배열의 사용법 80
__배열 리터럴 및 생성 80 / 인덱싱 및 할당 82 / 브로드캐스팅 83 / 뷰 84
5.3 사용자 정의 배열 타입 84

CHAPTER 6 병렬 연산 87
6.1 멀티스레딩 87
6.2 멀티프로세싱 90
6.3 분산 컴퓨팅 92
6.4 CUDA GPU 활용 96

PART II 데이터 분석 도구

CHAPTER 7 재현 가능 환경 103
7.1 패키지 관리자 103
7.2 프로젝트 환경 관리 106
7.3 환경 재현 108

CHAPTER 8 상호작용 환경 111
8.1 IJulia.jl 111
8.2 Pluto.jl 113
8.3 구글 코랩 114
8.4 비주얼 스튜디오 코드 116

CHAPTER 9 데이터 처리 도구 117
9.1 Tables.jl 117
9.2 DataFrames.jl 118
__데이터프레임 생성 118 / 인덱싱 120 / 열 선택 및 변환 122 / 분할, 적용, 결합 123 / 팬더스와의 비교 124
9.3 Query.jl 126

CHAPTER 10 시각화 도구 129
10.1 Plots.jl 129
__기본 사용법 129 / 백엔드 변경 132 / StatsPlots.jl 133
10.2 Makie.jl 134

CHAPTER 11 데이터 처리 실습 139
11.1 변수명 정정 140
11.2 결측치 채우기 141
11.3 분포 변환 145

PART III MLJ를 이용한 머신러닝

CHAPTER 12 워크플로 151
12.1 데이터 준비 152
__과학적 타입 153 / 데이터셋 분할 155 / 전처리 156
12.2 모델 준비 157
__모델 검색 157 / 모델 코드 로딩 159 / 모델 타입 체계 160
12.3 학습, 예측, 평가 161
__학습 161 / 예측 164 / 평가 측도 165 / 교차검증 166
12.4 하이퍼파라미터 튜닝 167
__튜닝 예제 168 / 조기 종료 171

CHAPTER 13 모델 합성 173
13.1 데이터셋 준비 173
13.2 파이프라인(합성 모델) 175
__파이프라인 튜닝 176 / 셀프튜닝 모델들의 파이프라인 178 / 타깃 변환 179
13.3 파이프라인(학습 네트워크) 180
__프로토타이핑 180 / 학습 네트워크 내보내기 183
13.4 배깅 186
__EnsembleModel 187 / 학습 네트워크 188 / RandomForest 189
13.5 스태킹 190
__스태킹 과정 191 / 학습 네트워크 194

CHAPTER 14 비정형 데이터 197
14.1 이미지 분류 197
__데이터 정형화 198 / 다양한 모델 적용 199
14.2 텍스트 분석 205
__텍스트 전처리 206 / 텍스트 데이터의 특성 추출 208 / 학습 및 예측 211

PART IV 플럭스를 이용한 딥러닝

CHAPTER 15 자동 미분 217
15.1 미분 구하는 방법 217
15.2 미분 구현 실습 220
__구현 1: 손 미분 220 / 구현 2: 수치 미분 220 / 구현 3: 기호 미분 221 / 구현 4: 자동 미분 222 / 15.3 플럭스의 자동 미분 227
__자이곳 사용법 227 / 소스 코드 변환 방식 229

CHAPTER 16 플럭스 사용법 235
16.1 데이터 준비 236
16.2 모델 생성 237
__가중치 초기화 238 / 사용자 정의 타입과 함자 238
16.3 학습 및 테스트 240
__모델 학습 함수 240 / 모델 테스트 함수 242
16.4 전체 실행 242
__손실 함수 및 옵티마이저 지정 243 / 에폭별 실행 243 / 모델 저장 및 로딩 245
16.5 관련 패키지 246

CHAPTER 17 컴퓨터 비전 249
17.1 합성곱 신경망 249
__패션 아이템 분류 249 / 숫자 손글씨 분류 253
17.2 전이 학습 253
__데이터셋 준비 254 / 학습 및 테스트 함수 255 / 모델 정의 255 / 학습 및 테스트 256
17.3 가짜 이미지 생성 258
__사용자 정의 데이터셋 258 / 생성자와 판별자 261 / 훈련 262
17.4 객체 탐지 265
__객체 탐지 266 / 탐지 결과 그리기 267

CHAPTER 18 자연어 처리 271
18.1 순환 신경망 271
__셀과 래퍼 271 / 계층 273 / 손실 함수 정의 274
18.2 문자열 생성 275
__데이터셋 생성 276 / 모델 및 손실 함수 278 / 학습 및 문자열 생성 279
18.3 텍스트 분류 280
__데이터셋 준비 281 / 학습 및 테스트 함수 282 / 임베딩층 283 / 어텐션층 283 / 모델 정의 284 / 사전 학습된 임베딩 286 / 최종 결과 286
18.4 트랜스포머 288
__데이터셋 준비 및 학습, 텍스트 함수 288 / 모델 정의 288 / 학습 결과 290 / 정규화 순서 바꾸기 291
18.5 BERT 292
__텍스트 토큰화 292 / 특성 추출 294 / 분류 모델 정의 및 학습 295
18.6 허깅페이스 296
__BERT 기반의 모델 298 / GPT-2 299 / BART 300

PART V 심층 강화학습
CHAPTER 19 강화학습 환경 305
19.1 환경 사용법 305
19.2 카트폴 환경 307
19.3 사용자 정의 환경 309

CHAPTER 20 가치 기반 알고리즘 313
20.1 기본 개념 313
__정책, 궤적, 이득 313 / 기대이득, 최적정책 314 / 가치 함수: (최적) 상태, (최적) 행동 314 / 어드밴티지 함수 315 / 시간차 학습 315 / 활성 정책 vs 비활성 정책 317 / 탐험과 활용 317 / 타깃 네트워크 318 / 행동자-비평자 318
20.2 DQN 318
__경험 재현 버퍼 319 / 하이퍼파라미터 321 / 모델 정의 323 / 전체 실행 함수 325 / 행동 선택 함수 328 / 모델 훈련 함수 328 / 손실 함수 반환 함수 330 / 카트폴 결과 331
20.3 DDPG 333
__코드 구현 334 / 카트폴 결과 336
20.4 SAC 337
__코드 구현 338 / 카트폴 결과 342

CHAPTER 21 정책 기반 알고리즘 343
21.1 기본 개념 343
__정책 경사 343 / GAE 345
21.2 A2C 346
__롤아웃 버퍼 346 / 이득 및 GAE 계산 349 / 하이퍼파라미터 350 / 모델 정의 352 / 전체 실행 함수 354 / 행동 선택 함수 356 / 모델 훈련 함수 359 / 손실 함수 반환 함수 360 / 카트폴 결과 361
21.3 PPO 364
__코드 구현 366 / 카트폴 결과 367
21.4 가치 기반과 정책 기반 알고리즘 비교 368

맺음말 370
찾아보기 373

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.