장바구니 담기 close

장바구니에 상품을 담았습니다.

파이썬을 활용한 머신러닝 자동화 시스템 구축

파이썬을 활용한 머신러닝 자동화 시스템 구축

  • Gil’sLAB
  • |
  • 위키북스
  • |
  • 2022-08-31 출간
  • |
  • 412페이지
  • |
  • 175 X 235 X 21 mm
  • |
  • ISBN 9791158393427
판매가

28,000원

즉시할인가

25,200

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
25,200

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평



★ 이 책에서 다루는 내용 ★

◎ 머신러닝 모델 개발 프로세스
◎ 데이터 탐색 결과에 따른 적절한 전처리 기법 및 모델 선택
◎ 파이썬을 이용한 머신러닝 모델 개발 실무
◎ 모델의 특성 및 작동 원리
◎ 머신러닝 자동화를 위한 최적화 문제
◎ 그리드 서치와 랜덤 서치
◎ 유전 알고리즘과 베이지안 최적화
◎ 머신러닝 자동화를 위한 테크닉
◎ 실전 머신러닝 자동화 시스템 구축


목차


▣ 들어가며
머신러닝 자동화란?
__머신러닝 자동화 시스템 도입에 따른 효과
__관련 패키지 및 시스템
__머신러닝 자동화를 배워야 하는 이유
분석 및 개발 환경
__파이썬 환경 및 패키지
__폴더 구조
활용 데이터 소개
__데이터 출처
__데이터 구성
__분류용 데이터
__회귀용 데이터

[01부] 머신러닝 핵심 개념

▣ 01장: 머신러닝 모델 개발 프로세스
1.1 머신러닝 과제의 분류
__지도 학습
__모델 학습 및 활용 과정
__상태 공간(state space)과 지도 학습 과제의 분류
__객관적인 평가
__일반화와 과적합
__데이터 분할: (1) 학습 데이터와 평가 데이터
__데이터 분할: (2) k-겹 교차 검증
__비지도 학습
__군집화
__이상 탐지
__요약
1.2 문제 정의와 데이터 수집
__머신러닝 프로세스
__문제 정의
__데이터 수집
__요약
1.3 데이터 탐색 및 전처리
__기초 데이터 탐색
__결측치 처리
__범주형 변수 처리
__분포 확인
__클래스 불균형 문제
__특징 공학
__요약
1.4 모델 학습: 모델 선택 및 하이퍼파라미터 튜닝
__모델 선택
__하이퍼파라미터 튜닝
__요약
1.5 모델 평가
__분류 모델 평가
__회귀 모델 평가
__요약

▣ 02장: 파이썬을 이용한 머신러닝 모델 학습
2.1 데이터 준비
__데이터 불러오기
__데이터 확인하기
2.2 데이터 탐색 및 전처리
__사이킷런을 이용한 데이터 전처리
__결측 처리
__범주 및 서열형 변수 처리
__재샘플링
__특징 선택
__요약
2.3 모델 학습 및 평가
__모델 학습
__모델 평가
__요약
2.4 파이프라인과 모델 저장
__머신러닝 파이프라인
__피클 모듈
__요약

▣ 03장: 주요 지도 학습 모델
3.1 선형 모델
__선형 회귀
__로지스틱 회귀
__선형성을 고려한 특징 공학
__요약
3.2 k-최근접 이웃
__작동 과정 및 모델의 장단점
__주요 하이퍼파라미터
__스케일링과 특징 공학의 필요성
__사이킷런 실습
__요약
3.3 결정 나무
__모델 구조와 작동 과정
__모델 특성
__주요 하이퍼파라미터
__사이킷런 실습
__요약
3.4 신경망
__모델 구조와 작동 과정
__학습 과정과 주요 파라미터
__사이킷런 실습
__요약
3.5 앙상블 모델
__앙상블 종류
__결정 나무 기반의 앙상블 모델
__요약

[02부] 머신러닝 자동화를 위한 최적화 알고리즘

▣ 04장: 최적화 문제
4.1 최적화 모델
__최적화 모델의 구성
__최적화 모델 및 그래프 기반의 해법 예제
__머신러닝 자동화를 위한 최적화
__요약
4.2 다양한 해법
__최적화 문제의 해법 개요
__휴리스틱 해법
__초기화
__평가
__속도 계산
__위치 업데이트
__요약

▣ 05장: 그리드 서치와 랜덤 서치
5.1 그리드 서치
__개요
__구현 실습
__요약
5.2 랜덤 서치
__개요
__확률 변수 분포
__관련 함수
__요약

▣ 06장: 유전 알고리즘
6.1 이론
__개요
__유전자 표현
__선택 연산
__교차 연산
__돌연변이 연산
__주요 하이퍼파라미터
__요약
6.2 실습 (1) 특징 선택
__문제 정의
__유전 알고리즘 연산자 정의
__메인 함수
__요약
6.3 실습 (2) 외판원 순회 문제
__문제 정의
__유전 알고리즘 연산자 정의
__메인 함수
__요약

▣ 07장: 베이지안 최적화
7.1 이론
__블랙박스 최적화 문제
__베이지안 최적화 개요
__대체 모델
__획득 함수
__메인 함수
__요약

[03부] 머신러닝 자동화 시스템 구축

▣ 08장: 머신러닝 자동화를 위한 테크닉
8.1 속도 향상을 위한 테크닉
__조기 종료(early stopping)
__다중 충실도(multi-fidelity)
__확장성(scalability)
__요약
8.2 웜 스타트와 메타 학습
__메타 학습
__실습: 메타 학습을 이용한 하이퍼파라미터 튜닝의 웜 스타트
__요약
8.3 튜닝 범위 설정
__튜닝 범위 설정의 필요성 및 개요
__반복측정 분산분석을 이용한 주요 하이퍼파라미터 식별
__결정 나무를 이용한 하이퍼파라미터 범위 설정
__요약

▣ 09장: 머신러닝 자동화를 위한 파이썬 패키지
9.1 Auto-Sklearn
__이론적 배경
__패키지 실습
__요약
9.2 H2O AutoML
__이론적 배경
__실습
__요약

▣ 10장: 실전 시스템 구축
10.1 시스템 (1) MyAutoML1
__문제 정의
__클래스 설계
__시스템 구현 및 활용
10.2 시스템 (2) MyAutoML2
__클래스 설계
__실험을 통한 하이퍼파라미터 범위 설정
__랜덤 포레스트의 하이퍼파라미터 범위 설정
__XGBoost의 하이퍼파라미터 범위 설정
__LightGBM의 하이퍼파라미터 범위 설정
__시스템 구현 및 활용
10.3 시스템 (3) MyAutoML3
__문제 정의
__클래스 설계
__메타 모델 학습
__시스템 구현 및 활용

▣ 마치며

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.