장바구니 담기 close

장바구니에 상품을 담았습니다.

Physically Based Rendering(물리 기반 렌더링)

Physically Based Rendering(물리 기반 렌더링)

  • 매트 파르
  • |
  • 에이콘출판
  • |
  • 2015-10-16 출간
  • |
  • 1224페이지
  • |
  • 188 X 255 X 51 mm /2119g
  • |
  • ISBN 9788960777620
★★★★★ 평점(10/10) | 리뷰(1)
판매가

58,000원

즉시할인가

52,200

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
52,200

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

★ 이 책에서 다루는 내용 ★

이 책은 현대 실사 렌더링 시스템 기반의 수학적인 이론과 함께 실질적인 구현을 설명한다. 문학적 프로그래밍(literate programming)으로 알려진 메소드를 써서 사람이 읽을 수 있는 문서와 소스코드를 합쳐, 잘 이해할 수 있도록 특별히 설계된 하나의 참고문헌으로 만들었다. 그래픽 교육에 있어 경탄할 만한 성취다. 이 책의 개념과 소프트웨어를 통해 굉장히 아름다운 이미지를 생성하는 완전한 기능의 렌더링 시스템을 디자인하고 사용하는 방법을 배우게 될 것이다.

■ 표면 밑 산란, 메트로폴리스 빛 전송, 사전 계산 빛 전송, 다중 분광 렌더링 등을 다루는 많은 내용이 개정판에 추가되었다.
■ 이 책에서 설명한 렌더링 시스템의 윈도우, OS X, 리눅스 지원 소스코드는 www.pbrt.org에서 볼 수 있다.
■ 코드와 문서는 각 함수, 변수, 메소드를 처음 설명하는 페이지를 열거하고, 고유한 색인 기능으로 긴밀히 상호 참조할 수 있도록 정리했다.

★ 이 책의 대상 독자 ★

이 책의 주요 독자층은 대학원생 혹은 학부 고학년 컴퓨터 그래픽스 강의를 들을 수 있는 수준의 학생들이다. 이 책은 기본적으로 독자들이 대학 입문 수준의 컴퓨터 그래픽스 지식을 갖췄다고 가정하지만, 벡터 기하학이나 변환 같은 특정한 중요한 개념은 설명한다. 몇 만 줄 이상의 프로그램을 경험해보지 못한 학생들에게 문학적 프로그래밍 방식은 이런 복잡성에 대한 바람직한 소개가 될 것이다. 우리는 이런 독자들에게 왜 시스템이 이런 방식으로 구성됐는지를 알려주기 위해 시스템의 핵심 인터페이스와 추상화에 대한 이유를 설명하는 데 특별히 신경을 썼다.
두 번째 대상 독자층은 전문적인 대학원생들과 연구자, 소프트웨어 개발 종사자, 그리고 자신만의 렌더링 시스템을 구현하는 데 재미를 느끼고 관심이 있는 사람들이다. 이 책의 많은 내용이 이런 독자들에게는 익숙하겠지만, 알고리즘들의 문학적 방식의 설명을 보는 것이 새로운 관점을 제공할 수 있다. pbrt는 표면 세분화(subdivision surfaces), 몬테카를로 빛 전송(Monte Carlo light transport)과 메트로폴리스 표본화(Metropolis sampling)같이 고도화된 구현이 어려운 알고리즘들과 테크닉들의 구현을 포함하고 있으며, 이 내용은 특히 경험 있는 렌더링 현업자에게 관심 있는 분야일 것이다. 하나의 완전하고 비중 있는 렌더링 시스템의 구조를 파헤치는 것이 이런 독자들의 관심을 유발하기를 기대한다.

★ 이 책의 구성 ★

개정판에서 달라진 점
초판이 발행된 지 6년이 지났다. 그 동안 수천 권이 팔렸으며, 수천 번의 pbrt 다운로드가 있었다. 많은 피드백과 격려가 있었으며, 우리의 경험을 바탕으로 초판의 pbrt 버전과 업데이트된 버전의 변화를 결정했다.

1. 플러그인(plugin) 아키텍처를 제거 초기 버전 pbrt는 실행 중(run-time) 플러그인 아키텍처를 통해 장면을 렌더하기 위한 기하 모양(shape), 광원, 적분기(integrator), 카메라 등의 물체(object)를 동적으로 불러왔다. 사용자들은 렌더링 시스템을 다시 컴파일할 필요 없이 새로운 물체 종류(예, 새로운 기하 모양)를 추가해 확장할 수 있었다. 이 방식은 초기에 우아하게 보였지만, 복잡한 멀티플랫폼의 지원과 어려운 디버깅을 야기했다. 유일하게 사용 가능한 시나리오(바이너리(binary) pbrt 배포본 혹은 바이너리 플러그인)는 우리의 교육적 오픈소스 목표와 반하므로 이번 판에서 제외됐다.

2. 이미지 처리 파이프라인(image processing pipeline)을 제거 초기 버전에서는 톤 매핑(tone-mapping) 인터페이스를 통해 고명암비(HDR, High Dynamic Range) 부동소수점 결과 이미지를 직접 저명암비(low dynamic range) TIFF로 전환해 보여줬다. 이 기능은 HDR 이미지가 드물던 2004년 기준으로 만들어졌다. 하지만 2010년에는 디지털 사진술(photography)의 발달로 HDR 이미지가 흔해졌다. 톤 매핑의 이론과 실습은 우아하고 배울 가치가 있지만, 새 버전에선 이미지 형성(formation) 과정에 집중하고 이미지 디스플레이(display)를 제외하기로 했다. 관심 있는 독자들은 레인하드(Reinhard) 등(2005)의 철저한 최신 HDR 이미지 디스플레이를 위한 처리에 관한 책을 읽어보자.

3. 작업 병렬화 멀티코어 아키텍처는 이제 도처에 존재하며, pbrt 역시 유저들의 사용 가능한 코어의 개수대로 성능을 확장할 수 있어야 의미 있다. 이 책의 병렬 프로그래밍 구현에 관한 세부 사항(예, 적절한 작업 크기나 뮤텍스(mutex) 종류)이 그래픽 프로그래머가 아직도 어렵고 잘 가르쳐주지 않는 확장 가능한 병렬 코드 개발의 세부 사항과 복잡성을 이해하는 데 도움이 되길 바란다.

4. 프로덕션(production) 렌더링에의 적합성 초기 버전은 순수하게 교육용 툴과 렌더링 연구의 디딤돌로서 제작됐다. 사실 초기 버전은 제한된 이미지 기반 라이팅(image-based lighting), 모션 블러(motion blur) 미지원, 복잡한 라이팅에서의 광자 매핑(photon mapping) 구현의 불안정성 등 프로덕션 환경에서의 사용이 어려운 점이 많았다. 초기 버전보다 훨씬 발전된 기능의 지원과 표면 밑 산란(subsurface scattering)과 메트로폴리스 빛 전송(Metropolis light transport)의 지원으로 복잡한 환경의 초고품질 렌더링 이미지에 훨씬 적합해졌다. 기능 개선을 통해 더욱 기능이 완전해졌지만, 교수에겐 학생이 처리 가능한 과제를 주는 것이 더욱 어려워졌다. 사실 초기 버전 pbrt에 대해서도 학생들이 직접 레이트레이싱 시스템을 개발하는 것의 부담과 이점에 대한 트레이드오프가 발생했다. 초기 버전의 pbrt가 많은 대학에서 사용됐으므로, 새 버전의 복잡성과 기능 완성의 트레이드오프가 바람직해 계속 고품질 렌더링 수업에 사용되길 바란다.

목차

1 서론
1.1 문학적 프로그래밍
1.1.1 색인과 상호 참조
1.2 극 사실적 렌더링과 레이트레이싱 알고리즘
1.2.1 카메라
1.2.2 광선-물체 교차점
1.2.3 빛 분포
1.2.4 가시성
1.2.5 표면 산란
1.2.6 재귀적 레이트레이싱
1.2.7 광선 전파
1.3 pbrt: 시스템 개요
1.3.1 실행 단계
1.3.2 장면 표현
1.3.3 렌더러 인터페이스와 SamplerRenderer
1.3.4 주 렌더링 루프
1.3.5 pbrt의 병렬화
1.3.6 휘티드 레이트레이싱의 적분기
1.4 이 책을 읽는 방법
1.4.1 연습문제
1.5 코드의 사용과 이해
1.5.1 포인터 혹은 참조?
1.5.2 코드 최적화
1.5.3 이 책의 웹사이트
1.5.4 시스템의 확장
1.5.5 버그
__더 읽을거리
__연습문제

2 기하 구조와 변환
2.1 좌표계
2.1.1 좌표계의 손 방향
2.2 벡터
2.2.1 연산
2.2.2 크기 변경
2.2.3 내적과 외적
2.2.4 정규화
2.2.5 한 벡터로부터의 좌표계
2.3 점
2.4 법선
2.5 광선
2.5.1 광선 미분
2.6 3차원 경계 상자
2.7 변환
2.7.1 동차 좌표계
2.7.2 기본 연산
2.7.3 이동
2.7.4 크기 변경
2.7.5 x, y, z축 회전
2.7.6 임의의 축에 대한 회전
2.7.7 보는 방향 변환
2.8 변환의 적용
2.8.1 점
2.8.2 벡터
2.8.3 법선
2.8.4 광선
2.8.5 경계 상자
2.8.6 변환의 조합
2.8.7 변환과 좌표계의 손 방향
2.9 애니메이션 변환
2.9.1 사원수
2.9.2 사원수 보간
2.9.3 AnimatedTransform 구현
2.10 미분 기하 구조
__더 읽을거리
__연습문제

3 모양
3.1 기본 모양 인터페이스
3.1.1 경계
3.1.2 세분화
3.1.3 교차점
3.1.4 잘못된 자가 교차의 회피
3.1.5 음영 기하 구조
3.1.6 표면 면적
3.1.7 방향성
3.2 구
3.2.1 생성
3.2.2 경계
3.2.3 교차
3.2.4 부분적 구
3.2.5 법선 벡터의 편미분
3.2.6 DifferentialGeometry 초기화
3.2.7 표면 면적
3.3 원기둥
3.3.1 생성
3.3.2 경계
3.3.3 교차
3.3.4 부분 원기둥
3.3.5 표면 면적
3.4 원반
3.4.1 생성
3.4.2 경계
3.4.3 교차
3.4.4 표면 면적
3.5 다른 이차 곡면
3.5.1 원뿔
3.5.2 쌍곡면
3.5.3 포물면
3.6 삼각형과 메시
3.6.1 삼각형
3.6.2 삼각형 교차점
3.6.3 표면 면적
3.6.4 음영 기하 구조
3.7 세분 표면
3.7.1 메시 표현
3.7.2 경계
3.7.3 세분화
__더 읽을거리
__연습문제

4 프리미티브와 교차 가속
4.1 프리미티브 인터페이스와 기하학적 프리미티브
4.1.1 기하학적 프리미티브
4.1.2 TransformedPrimitive 물체 인스턴싱과 애니메이션 프리미티브
4.2 집합체
4.2.1 광선-상자 교차
4.3 격자 가속기
4.3.1 생성
4.3.2 횡단
4.4 경계 볼륨 계층
4.4.1 BVH 생성
4.4.2 표면 면적 휴리스틱
4.4.3 횡단을 위한 간편한 BVH
4.4.4 횡단
4.5 KD 트리 가속기
4.5.1 트리 표현
4.5.2 트리 생성
4.5.3 횡단
4.6 집합체 디버깅
4.6.1 집합체의 버그 찾기
4.6.2 집합체의 버그 수정
4.6.3 집합체 성능 버그
__더 읽을거리
__연습문제

5 색과 방사 분석
5.1 분광 표현
5.1.1 Spectrum 형
5.1.2 CoefficientSpectrum 구현
5.2 SampledSpectrum 클래스
5.2.1 XYZ 색
5.2.2 RGB 색
5.3 RGBSpectrum 구현
5.4 기본 방사 분석
5.4.1 기본 양
5.4.2 입사와 방출 방사 함수
5.4.3 휘도와 측광
5.5 방사 측정 적분
5.5.1 투영된 입체각에 대한 적분
5.5.2 구좌표에 대한 적분
5.5.3 면적에 대한 적분
5.6 표면 반사
5.6.1 BRDF
5.6.2 BSSRDF
__더 읽을거리
__연습문제

6 카메라 모델
6.1 카메라 모델
6.1.1 카메라 좌표 공간
6.2 투영 카메라 모델
6.2.1 정사영 카메라
6.2.2 원근 카메라
6.2.3 피사계 심도
6.3 환경 카메라
__더 읽을거리
__연습문제

7 표본 추출과 재구성
7.1 표본화 정리
7.1.1 주파수 영역과 퓨리에 변환
7.1.2 이상적인 표본화와 재구성
7.1.3 에일리어싱
7.1.4 안티에일리어싱 기술
7.1.5 이미지 합성에 활용
7.1.6 렌더링에서 에일리어싱의 근원
7.1.7 픽셀에 대한 이해
7.2 이미지 표본 인터페이스
7.2.1 표본 표현과 할당
7.3 층별 표본화
7.4 저불일치 표본화
7.4.1 불일치의 정의
7.4.2 햄머슬리와 핼톤 연속
7.4.3 (0,2)-연속
7.4.4 저불일치 표본기
7.5 최고-후보 표본 패턴
7.6 적응적 표본화
7.7 이미지 재구성
7.7.1 필터 함수
7.8 필름과 이미지화 파이프라인
7.8.1 필름 인터페이스
7.8.2 이미지 필름
__더 읽을거리
__연습문제

8 반사 모델
8.1 기본 인터페이스
8.1.1 반사
8.1.2 BRDF → BTDF 어댑터
8.1.3 BxDF 크기 변환 어댑터
8.2 거울 반사와 투과
8.2.1 프레넬 반사
8.2.2 거울 반사
8.2.3 반사광 투과
8.3 램버트 반사
8.4 미세면 모델
8.4.1 오렌-네이어 확산 반사
8.4.2 토랜스-스패로우 모델
8.4.3 블린 미세면 분포
8.4.4 비등방성 미세면 모델
8.5 프레넬 입사 효과
8.6 측정된 BRDF
8.6.1 비균일 등방성 측정 BRDF
8.6.2 균일 반각 형식
__더 읽을거리
__연습문제

9 재질
9.1 BSDF
9.1.1 BSDF 메모리 관리
9.2 재질 인터페이스와 구현
9.2.1 무광 재질
9.2.2 플라스틱 재질
9.2.3 혼합 재질
9.2.4 측정 재질
9.2.5 추가적인 재질
9.3 범프 매핑
__더 읽을거리
__연습문제

10 텍스처 함수 필터링
10.1 표본화와 안티에일리어싱
10.1.1 텍스처 표본율 찾기
10.1.2 텍스처 함수 필터링
10.1.3 거울 반사와 투과를 위한 광선 차분
10.2 텍스처 좌표 생성
10.2.1 2D (u, v) 매핑
10.2.2 구면 매핑
10.2.3 원통 매핑
10.2.4 평면 매핑
10.2.5 3D 매핑
10.3 텍스처 인터페이스와 기본 텍스처
10.3.1 상수 텍스처
10.3.2 텍스처 크기 변화
10.3.3 텍스처 혼합
10.3.4 이중선형 보간
10.4 이미지 텍스처
10.4.1 텍스처 캐싱
10.4.2 MIP 맵
10.4.3 등방성 삼각 필터
10.4.4 타원형 가중 평균
10.5 입체와 절차적 텍스처링
10.5.1 UV 텍스처
10.5.2 체커보드
10.5.3 입체 체커보드
10.6 잡음
10.6.1 펄린 잡음
10.6.2 임의의 물방울무늬
10.6.3 잡음 관용구와 분광 합성
10.6.4 울퉁불퉁하고 주름진 텍스처
10.6.5 풍랑
10.6.6 대리석
__더 읽을거리
__연습문제

11 입체 산란
11.1 입체 산란 과정
11.1.1 흡수
11.1.2 방출
11.1.3 외산란과 흡광
11.1.4 내산란
11.2 위상 함수
11.3 입체 인터페이스와 동일 매질
11.3.1 동질 입체
11.4 변화하는 밀도 입체
11.4.1 3D 격자
11.4.2 지수 밀도
11.5 입체 집합체
11.6 BSSRDF
11.6.1 표면 밑 산란 재질
__추가 도서 목록
__연습문제

12 광원
12.1 빛 인터페이스
12.1.1 시야 시험
12.2 점광원
12.2.1 스포트라이트
12.2.2 텍스처 투영 빛
12.2.3 각광도계 표 빛
12.3 원거리 광
12.4 영역 광
12.5 무한 영역 광
__더 읽을거리
__연습문제

13 몬테카를로 적분 I: 기본 개념
13.1 배경 지식과 확률의 검토
13.1.1 연속 임의의 변수
13.1.2 기댓값과 분산
13.2 몬테카를로 추정기
13.3 임의의 변수의 기본 표본화
13.3.1 역 방식
13.3.2 배제 방식
13.4 메트로폴리스 표본화
13.4.1 기본 알고리즘
13.4.2 변형 선택 전략
13.4.3 초기 편향
13.4.4 메트로폴리스 표본화로 적분 예측
13.4.5 예: 1차원 설정
13.5 분포 사이에서 변환
13.5.1 다중 차원에서 변환
13.5.2 예: 극좌표계
13.5.3 예: 구좌표계
13.6 다차원 변환의 2D 표본화
13.6.1 예: 반구의 균일 표본화
13.6.2 예: 단위 원반의 표본화
13.6.3 예: 코사인 가중 반구 표본화
13.6.4 예: 삼각형 표본화
13.6.5 예: 부분 상수 2D 분포
__더 읽을거리
__연습문제

14 몬테카를로 적분 II: 효율 개선
14.1 러시안 룰렛과 분리
14.1.1 분리
14.2 신중한 표본 배치
14.2.1 계층 표본화
14.2.2 의사 몬테카를로
14.2.3 표본 뒤틀림과 왜곡
14.3 편향
14.4 중요성 표본화
14.4.1 다중 중요도 표본화
14.5 표본화 반사 함수
14.5.1 블린 미세 표면 분포 표본화
14.5.2 비등방성 미세 표면 모델의 표본화
14.5.3 FresnelBlend 표본화
14.5.4 광택 반사와 투과
14.5.5 응용: 반사 예측
14.5.6 BSDF 표본화
14.6 광원 표본화
14.6.1 기본 인터페이스
14.6.2 특이점이 있는 빛
14.6.3 영역 광
14.6.4 SHAPESET 표본화
14.6.5 무한 영역 광
14.7 입체 산란
14.7.1 상 함수의 표본화
14.7.2 광학적 두께의 계산
__더 읽을거리
__연습문제

15 빛 전송 I: 표면 반사
15.1 직접 광
15.1.1 직접 광 적분의 예측
15.2 빛 전송 방정식
15.2.1 기본 유도
15.2.2 LTE에로의 분석 해법
15.2.3 LTE의 표면 형
15.2.4 경로에 대한 적분
15.2.5 피적분 함수에서의 델타 분포
15.2.6 피적분 함수의 분할
15.2.7 측정 방정식과 중요도
15.3 경로 추적
15.3.1 개요
15.3.2 경로 표본화
15.3.3 점진적 경로 생성
15.3.4 구현
15.3.5 양방향 경로 추적
15.4 순간 전역 조명
15.4.1 가상 광원 생성
15.4.2 가상 광원으로 렌더링
15.5 방사 조도 캐싱
15.5.1 방사 조도 캐시로 렌더링
15.5.2 검색과 보간
15.5.3 새로운 값 추가
15.6 입자 추적과 광자 매핑
15.6.1 입자 추적을 위한 이론적 기반
15.6.2 광자 적분기
15.6.3 광자 맵의 생성
15.6.4 광자 맵의 사용
15.6.5 광자 보간과 밀도 예측
15.7 메트로폴리스 빛 전송
15.7.1 표본 표현
15.7.2 변이
15.7.3 경로 생성
15.7.4 경로 기여
15.7.5 MetropolisRenderer 구현
15.7.6 렌더링
__더 읽을거리
__연습문제

16 빛 전송 II: 입체 렌더링
16.1 전송 방정식
16.2 입체 적분 인터페이스
16.3 방출 전용 적분기
16.4 단일 산란 적분기
16.5 표면 밑 산란
16.5.1 표본점의 푸아송 분포
16.5.2 표면 점 8진 트리의 생성
16.5.3 양극 확산 근사
16.5.4 계층적 적분으로 렌더링
16.5.5 산란 특성의 설정
__더 읽을거리
__연습문제

17 빛 전송 III: 사전 계산 빛 전송
17.1 기저 함수: 이론
17.1.1 부분 상수 기저
17.1.2 기저로의 투영
17.1.3 정규 직교 기저 함수
17.2 구면 조화
17.2.1 효율적인 계산
17.2.2 광원 투영
17.2.3 입사 방사 함수의 투영
17.2.4 물결 감소
17.2.5 회전
17.3 방사 탐색기
17.3.1 방사 탐색기의 생성
17.3.2 방사 탐색기의 사용
17.4 사전 계산한 확산 전송
17.5 사전 계산된 광택 전송
17.5.1 전송 행렬
17.5.2 BSDF 행렬
17.5.3 GlossyPRTIntegrator 구현
__더 읽을거리
__연습문제

18 회고와 미래
18.1 디자인 회고
18.1.1 추상성과 효율성
18.1.2 대안 디자인: 삼각형 전용
18.1.3 증가된 장면 복잡도
18.2 처리량 프로세서
18.2.1 미래
18.2.2 추가 자료
18.3 결론

부록 A 다용도 함수
A.1 주 인클루드 파일
A.2 이미지 파일 입력과 출력
A.3 사용자 인터페이스
A.4 탐색기와 통계
A.5 메모리 관리
A.6 수학적 루틴
A.7 8진 트리
A.8 kd 트리
A.9 병렬화
__더 읽을거리
__연습문제

부록 B 장면 설명 인터페이스
B.1 매개변수 집합
B.2 초기화와 렌더링 옵션
B.3 장면 정의
B.4 새로운 객체 구현의 추가
__더 읽을거리
__연습문제

부록 C 코드 조각 찾아보기
부록 D 클래스와 멤버 찾아보기
부록 E 다양한 식별자 찾아보기

저자소개

저자 매트 파르(Matt Oharr)는 인텔(Intel)의 특급 엔지니어로, 어드밴스드 렌더링 테크놀로지(Advanced Rendering Technology) 그룹의 리드 아키텍트다. 이전에 이종 CPU+GPU 시스템에서의 그래픽에 대한 프로그래밍 모델에 대해 작업한 네옵티카(Neoptica)를 공동 창업했다. 네옵티카는 인텔이 인수했다. 네옵티카 이전에는 엔비디아(NVIDIA)의 소프트웨어 아키텍처 그룹에 있었으며, 픽사(Pixar)의 렌더링 R&D 그룹에서 일했다. 스탠포드 그래픽스 연구소에서 박사 학위를 받았으며, 팻 한라한(Pat Hanrahan) 지도하에 작업했다. 『GPU Gems 2』의 편집자이기도 하다.

도서소개

이 책은 게임과 영화 등에 사용되는 컴퓨터 그래픽스에 대한 심도 깊은 이해를 돕고, 게임 엔진이나 렌더러 구현에 관심이 있는 현업 종사자나 학생들에게 매우 유용한 책이다. 영화 프로덕션의 렌더맨(RenderMan)이나 언리얼 엔진의 라이트 매스(Lightmass) 같은 오프라인 렌더러의 기술에 더해, 최근 게임 엔진에서 사용하는 렌더링 기술까지 다루는, 컴퓨터 그래픽스를 위한 최고의 서적이다.
선정내역
- 2016년 대한민국학술원 우수학술도서

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.