장바구니 담기 close

장바구니에 상품을 담았습니다.

그래프 신경망 입문

그래프 신경망 입문

  • 지유안리우 ,지에주
  • |
  • 에이콘출판
  • |
  • 2022-04-29 출간
  • |
  • 156페이지
  • |
  • 188 X 235 X 11 mm
  • |
  • ISBN 9791161756400
판매가

20,000원

즉시할인가

18,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
18,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




◈ 이 책에서 다루는 내용 ◈

그래프는 물리적 시스템 모델링, 분자 구조 핑거프린트 학습, 트래픽 네트워크 제어, 소셜 네트워크의 친구 추천처럼 복잡하게 얽혀 있는 실생활 문제들을 표현하기에 적합한 데이터 구조다. 이런 문제들을 해결하기 위해서는 엄청난 수의 관계 정보를 갖고 있는 비유클리드 그래프 데이터를 다뤄야 하는데, 전통적인 딥러닝 모델인 합성곱 신경망이나 순환 신경망으로 해결하기에는 한계가 있다. 일반적으로 그래프의 노드는 네트워크 임베딩 방법 같은 비지도 표현 학습에서는 잘 다룰 수 없는 유용한 특성 정보를 담고 있다. 그래프 신경망은 특성 전파와 결합으로 노드의 특성 정보와 그래프의 구조를 결합해 그래프를 잘 표현하게끔 만들어졌다. 확실한 성능과 높은 해석 가능성 덕분에 그래프 신경망이 최근 다양한 그래프 분석에 적용되고 있다.
이 책은 그래프 신경망의 기본 개념, 모델, 응용을 포괄적으로 다룬다. 가장 기본이 되는 그래프 신경망과 그 변형인 그래프 합성곱 네트워크(graph convolutional network), 그래프 순환 네트워크(graph recurrent network), 그래프 어텐션 네트워크(graph attention network), 그래프 잔차 네트워크(graph residual network)를 설명한다. 다양한 그래프 타입에 맞는 변형 모델과 심화된 학습 모델도 제공된다. 그래프 신경망이 적용되는 분야를 구조적, 비구조적, 기타 시나리오로 분류한 다음 각각을 해결하는 방법을 알려준다. 마지막 장에서는 관련된 오픈소스와 앞으로의 전망을 다룬다.

◈ 이 책의 구성 ◈

1장에서 개요를 살펴본 후 2장에서는 수학과 그래프 이론에 대한 기초 지식을 소개한다. 3장에서 신경망의 기초를 살펴보고, 4장에서 GNN의 기본 형태를 알아본다. 5장, 6장, 7장, 8장에서 네 종류의 모델을 소개한다. 9장과 10장에서 다른 그래프 종류의 변형과 고급 학습 방법을 설명한다. 그리고 11장에서 일반적인 GNN 프레임워크를 설명한다. 12장, 13장, 14장에서 구조적 시나리오, 비구조적 시나리오, 그 외 시나리오에 대한 GNN의 응용을 알아본다. 15장에서는 몇 가지 오픈소스를 제공한다.


목차


1장. 서론
1.1 동기
1.1.1 합성곱 신경망
1.1.2 네트워크 임베딩
1.2 관련 연구

2장. 수학 및 그래프 기초
2.1 선형대수학
2.1.1 기본 개념
2.1.2 고유분해
2.1.3 특잇값 분해
2.2 확률
2.2.1 기본 개념과 공식
2.2.2 확률분포
2.3 그래프 이론
2.3.1 기본 개념
2.3.2 그래프의 대수적 표현

3장. 신경망 기초
3.1 뉴런
3.2 역전파
3.3 신경망

4장. 기본 그래프 신경망
4.1 서론
4.2 모델
4.3 한계

5장. 그래프 합성곱 네트워크
5.1 스펙트럼 방법
5.1.1 스펙트럼 네트워크
5.1.2 ChebNet
5.1.3 GCN
5.1.4 AGCN
5.2 공간 방법
5.2.1 뉴럴 FPS
5.2.2 PATCHY-SAN
5.2.3 DCNN
5.2.4 DGCN
5.2.5 LGCN
5.2.6 MoNet
5.2.7 GraphSAGE

6장. 그래프 순환 네트워크
6.1 게이트 그래프 신경망
6.2 Tree-LSTM
6.3 그래프 LSTM
6.4 S-LSTM

7장. 그래프 어텐션 네트워크
7.1 GAT
7.2 GaAN

8장. 그래프 잔차 네트워크
8.1 하이웨이 GCN
8.2 지식 점프 네트워크
8.3 DeepGCNs

9장. 다양한 그래프 종류
9.1 유향 그래프
9.2 이종 그래프
9.3 에지 정보가 있는 그래프
9.4 동적 그래프
9.5 다차원 그래프

10장. 고급 학습 방법
10.1 샘플링
10.2 계층적 풀링
10.3 데이터 증강
10.4 비지도 학습

11장. 일반적인 프레임워크
11.1 메시지 전달 신경망
11.2 비지역 신경망
11.3 그래프 네트워크


12장. 응용: 구조 시나리오
12.1 물리
12.2 화학과 생물
12.2.1 분자 핑거프린트
12.2.2 화학 반응 예측
12.2.3 약물 추천
12.2.4 단백질과 분자 상호작용 예측
12.3 지식 그래프
12.3.1 지식 그래프 채우기
12.3.2 귀납 지식 그래프 임베딩
12.3.3 지식 그래프 정렬
12.4 추천 시스템
12.4.1 행렬 채우기
12.4.2 소셜 추천

13장. 응용: 비구조 시나리오
13.1 이미지
13.1.1 이미지 분류
13.1.2 시각적 추론
13.1.3 의미 구분
13.2 문자
13.2.1 문자 분류
13.2.2 시퀀스 레이블링
13.2.3 신경 기계 번역
13.2.4 관계 추출
13.2.5 사건 추출
13.2.6 사실 확인
13.2.7 그 밖의 응용

14장. 응용: 기타 시나리오
14.1 생성 모델
14.2 조합적 최적화

15장. 오픈소스
15.1 데이터셋
15.2 구현

16장. 결론

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 : 070-4821-5101
교환/반품주소
  • 부산광역시 부산진구 중앙대로 856 303호 / (주)스터디채널 / 전화 : 070-4821-5101
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.