장바구니 담기 close

장바구니에 상품을 담았습니다.

자동머신러닝

자동머신러닝

  • 프랭크허터 ,라스코토프 ,호아킨반쇼렌
  • |
  • 에이콘출판
  • |
  • 2021-12-31 출간
  • |
  • 380페이지
  • |
  • 188 X 235 X 21 mm
  • |
  • ISBN 9791161755960
판매가

30,000원

즉시할인가

27,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
27,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




◈ 이 책의 구성 ◈

1부에서는 AutoML 방법의 개요를 제공한다. 초보자들을 위한 탄탄한 개요를 제공하며 경험이 많은 AutoML 연구자에게 참고 자료가 사용될 것이다.
1장에서는 AutoML이 고려하는 가장 단순하고 일반적인 문제인 하이퍼파라미터 최적화 문제에 관해 설명하고, 현재 가장 효율적인 방법을 중점적으로 설명한다.
2장에서는 학습 방법, 즉 머신러닝 모델 평가에서 얻은 경험을 활용해 새로운 데이터로 새로운 학습 작업에 접근하는 방법을 설명한다.
3장에서는 NAS(Neural Architecture Search) 방법에 대해 포괄적으로 설명한다.

2부는 초보 사용자도 사용할 수 있는 실제 AutoML 시스템에 초점을 맞춰 설명한다.
4장에서는 최초의 AutoML 시스템 중 하나인 오토웨카(Auto-WEKA)를 설명한다. 이 툴킷은 잘 알려진 WEKA 머신러닝 툴킷을 기반으로 하며 다양한 분류 및 회귀 분석 방법, 하이퍼파라미터 설정 및 데이터 전처리 방법을 탐색한다.
5장에서는 널리 사용되는 사이킷런(scikit-learn) 프레임워크를 기반으로 하는 AutoML 프레임워크인 하이퍼옵트-사이킷런(Hyperopt-Sklearn)을 간략히 설명한다. 또한 시스템 사용 방법에 대한 몇 가지 실제 예도 포함돼 있다.
6장에서는 사이킷런을 기반으로 하는 오토사이킷런(Auto-sklearn)을 설명한다. 이는 오토웨카와 유사한 최적화 기술을 적용하고, 최적화 웜 스타트(warm starting) 및 자동 앙상블(auto ensembling)을 위한 메타러닝(meta-learning)과 같은 여러 가지 개선 사항을 추가했다. 또한 4장과 5장의 오토웨카 및 하이퍼옵트-사이킷런의 성능과 오토사이킷런의 성능과 비교한다.
7장에서는 딥신경망의 구조와 하이퍼파라미터를 모두 선택하는 자동 딥러닝을 위한 시스템인 오토넷(Auto-Net)을 간략히 설명한다.
8장에서는 트리 기반 머신러닝 파이프라인을 자동으로 구성하고 최적화하는 TPOT 시스템을 설명한다.
9장에서는 데이터 분석뿐만 아니라 예측 모델 및 성과 비교가 포함된 완전 자동화된 보고서를 생성해 데이터 과학을 자동화하는 시스템인 자동 통계 전문가 시스템(Automatic Statistician)을 설명한다.
마지막으로 3부와 10장에서는 2015년부터 실행돼 온 AutoML 챌린지(경연 대회)에 대해 간략히 설명한다.
10장에서는 경연 대회와 그 설계 배후에 있는 아이디어와 개념뿐만 아니라 과거 경연 대회에서 얻은 결과도 자세히 설명한다.

◈ 옮긴이의 말 ◈

자동머신러닝(AutoML)의 창시자(적어도 초기에 가장 큰 공헌을 한 연구자)들이 AutoML의 역사와 현황, 발전 방향을 다룬 책이다. 전통적인 머신러닝 분야, 메타러닝 및 NAS 분야에서 여러 개념을 설명하고 있으며, 더 나아가 실제적으로 사용하는 소프트웨어 및 프레임워크를 소개하고 있다. 더불어 이 모든 것의 종합적 기반을 다지게 한 AutoML 챌린지(경연 대회)에 대한 기반 아이디어 및 진행 경험을 보여주고 있다(나 또한 경연 대회는 머신러닝 발전을 위한 훌륭한 수단이라고 생각한다. 비근한 예로 ImageNet까지 안 가도 Kaggle을 생각해보라).
이 책이 기본 개념 및 배경 철학을 잘 다루고 있지만, 이 책의 저술 시기가 2018년이고 이후 많은 발전이 있었기 때문에 이를 보완하기 위해 He, Zhao와 Chu(2020)의 AutoML 최신 동향 조사를 요약 발췌해 부록에 첨부했다. 이 책과 같이 읽으면 AutoML의 근본적인 문제뿐만 아니라 최신 기법까지 섭렵할 수 있을 것이다. 이외에도 아주 중요한 문헌들을 참고문헌으로 첨부했으니 참고하기를 바란다.
추가로 이 책의 저자 프랭크 후터는 훌륭한 강연을 유튜브에 여러 편 남기고 있어 관심 있는 독자들은 참고하기 바란다. 더불어 유튜브나 블로그에 많은 AutoML에 관련된 많은 동영상과 글들이 있지만, 특히 카네기멜론대학교 교수인 아미트 탈왈카르(Ameet Talwalker)의 유튜브 강연을 보길 권한다. NAS의 탐색 공간, 구조 탐색 및 구조 평가의 관점에서 NAS를 분류하고 있는데 이는 개념을 정리하는 데 많은 도움이 될 것이다.
머신러닝과 딥러닝의 민주화를 기치(旗幟)로 하는 AutoML은 아마도 인공지능 분야의 가장 역동적이고 흥미로운 분야 중 하나이므로 앞으로 수년 내로 더욱 획기적인 발전이 있을 것으로 전망된다. 독자들이 이 책을 통해 단순히 기계적인 테크닉으로서의 AutoML이 아니라 인간이 가진 어떤 문제를 풀어 나가는 해법으로 AutoML를 인식하고, 인간이 더 높은 단계로 하나하나 문제를 풀어나가는 과정을 즐기기를 바란다.


목차


1부. AutoML 방법

1장. 하이퍼파라미터 최적화
1.1 서론
1.2 문제 기술
1.2.1 최적화에 대한 대안: 앙상블과 한계화
1.2.2 다중 목적에 대한 최적화
1.3 블랙박스 하이퍼파라미터 최적화
1.3.1 모델 프리 블랙박스 최적화 방법
1.3.2 베이지안 최적화
1.4 다중 충실도 최적화
1.4.1 조기 종료를 위한 학습 곡선 기반의 예측
1.4.2 밴딧 기반 알고리듬 선택 방법
1.4.3 충실도의 적응적 선택
1.5 AutoML에의 응용
1.6 미해결 문제와 미래 연구 방향
1.6.1 벤치마크와 비교 가능성
1.6.2 그래디언트 기반 최적화
1.6.3 확장성
1.6.4 과적합과 일반화
1.6.5 임의 크기의 파이프라인 구축


2장. 메타러닝
2.1 서론
2.2 모델 평가로부터 학습
2.2.1 작업 독립 권장
2.2.2 설정 공간 설계
2.2.3 설정 전이
2.2.4 학습 곡선
2.3 작업 속성으로부터 학습
2.3.1 메타 - 특성
2.3.2 메타 - 특성 학습
2.3.3 유사 작업으로부터 예열 시작 최적화
2.3.4 메타모델
2.3.5 파이프라인 합성
2.3.6 조정할 것인가, 조정하지 않을 것인가
2.4 사전 모델로부터 학습
2.4.1 전이학습
2.4.2 신경망으로 메타러닝
2.4.3 소수 사례 학습
2.4.4 지도학습을 넘어서
2.5 결론


3장. 신경망 구조 탐색
3.1 서론
3.2 탐색 공간
3.3 탐색 전략
3.4 성과 추정 전략
3.5 미래 방향


2부. AutoML Systems

4장. 오토웨카: 자동 모델 선택과 웨카를 활용한 하이퍼파라미터 최적화
4.1 서론
4.2 사전 준비
4.2.1 모델 선택
4.2.2 하이퍼파라미터 최적화
4.3 결합 알고리듬 선택과 하이퍼파라미터
4.3.1 순차적 모델 기반 알고리듬 구성
4.4 오토웨카
4.5 실험 평가
4.5.1 베이스라인 방법
4.5.2 검증 성과 결과
4.5.3 테스트 성과 결과
4.6 결론
4.6.1 커뮤니티 채택


5장. 하이퍼옵트 사이킷런
5.1 서론
5.2 배경: 최적화를 위한 하이퍼옵트
5.3 검색 문제로서 사이킷런 모델 선택
5.4 사용 예제
5.5 실험
5.6 논의와 미래 연구
5.7 결론


6장. 오토 사이킷런: 효율적이고 강건한 자동머신러닝 157
6.1 서론
6.2 CASH 문제로서의 AutoML
6.3 AutoML의 효율성과 강건성을 향상시키기 위한 새로운 방법
6.3.1 좋은 머신러닝 프레임워크를 찾기 위한 메타러닝
6.3.2 최적화 동안 평가된 모델의 자동 앙상블 구축
6.4 현실적인 AutoML 시스템
6.5 오토 사이킷런의 오토웨카와 하이퍼옵트 사이킷런과의 비교
6.6 AutoML 개선안의 평가
6.7 오토 사이킷런 구성 요소의 세부 분석
6.8 논의와 결론
6.8.1 논의
6.8.2 사용법
6.8.3 PoSH 오토 사이킷런의 확장
6.8.4 결론과 미래 연구


7장. 딥신경망의 자동 튜닝
7.1 서론
7.2 오토넷 1.0
7.3 오토넷 2.0
7.4 실험
7.4.1 오토넷 10과 오토 사이킷런의 베이스라인 평가
7.4.2 AutoML 경연 데이터셋에 대한 결과
7.4.3 오토넷 10과 20의 비교
7.5 결론


8장. TROP: 자동머신러닝을 위한 트리 기반 파이프라인 최적화 도구
8.1 서론
8.2 방법
8.2.1 머신러닝 파이프라인 연산자
8.2.2 트리 기반 파이프라인 구축
8.2.3 트리 기반 파이프라인 최적화
8.2.4 벤치마크 데이터
8.3 결과
8.4 결론과 미래 연구


9장. 자동 통계 전문가 시스템
9.1 서론
9.2 자동 통계 전문가의 기본 해부
9.2.1 관련 연구
9.3 시계열 데이터에 대한 자동 통계 전문가 시스템
9.3.1 커널에 대한 문법
9.3.2 탐색과 평가 절차
9.3.3 자연어 설명 생성
9.3.4 인간과의 비교
9.4 다른 자동 통계 전문가 시스템
9.4.1 핵심 구성 요소
9.4.2 설계에 있어서 풀어야 할 과제들
9.5 결론


10장. 2015-2018 AutoML 챌린지 시리즈에 관한 분석
10.1 서론
10.2 문제 설정과 개요
10.2.1 문제의 범위
10.2.2 완전 모델 선택
10.2.3 하이퍼파라미터 최적화
10.2.4 모델 탐색 전략
10.3 데이터
10.4 챌린지 프로토콜
10.4.1 시간 예산과 계산 자원
10.4.2 점수 척도
10.4.3 2015/2016 챌린지 라운드와 단계
10.4.4 2018 챌린지 단계
10.5 결과
10.5.1 2015/2016 챌린지에서 얻은 점수
10.5.2 2018 챌린지에서 얻은 점수
10.5.3 데이터셋/작업의 어려움
10.5.4 하이퍼파라미터 최적화
10.5.5 메타러닝
10.5.6 챌린지에서 사용된 방법들
10.6 논의
10.7 결론

부록 I. AutoML 최신 동향
부록 II. 메타러닝과 AutoML

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.