장바구니 담기 close

장바구니에 상품을 담았습니다.

이보다 더 쉬울 수 없는 자바 머신러닝 with Weka

이보다 더 쉬울 수 없는 자바 머신러닝 with Weka

  • 자바라머신러닝
  • |
  • 비제이퍼블릭
  • |
  • 2021-01-29 출간
  • |
  • 616페이지
  • |
  • 173 X 230 mm
  • |
  • ISBN 9791165920432
판매가

31,000원

즉시할인가

27,900

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
27,900

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




인터넷과 모바일 혁명이 도래하면서 수많은 IT 시스템들이 탄생했고 상당한 IT 시스템들이 Java로 구축되었습니다. R과 파이썬으로 구축된 데이터 분석 모듈이 Java에서 돌아가기 위해서는 이기종 간의 데이터 연동이 필요하고 구축 비용이나 투입되는 인력도 더 많이 소요될 것입니다. 그렇다고 java로 구축된 IT 시스템을 버리고 파이썬으로 고치는 것은 천문학적인 비용이 들어갈 수 있습니다.

Weka는 다양한 UI를 제공하고 코딩을 몰라도 기본적인 머신러닝이 가능하며, 설계 후에 머신러닝을 배포하고 시스템에 체계화하기 위한 Java 코딩까지 가능하도록 해줍니다. 앞으로 데이터 분석에서 코딩이란 보이지 않는 장벽 때문에 개발자들이 과도한 작업 시간을 강요받지 않도록, 이 책이 Java로 순조롭게 데이터 분석 기술을 전달할 수 있는 환경을 만들기를 기대합니다.


목차


Chapter 01 Why: Weka를 사용하는 이유
1.1 왜 데이터 분석인가? 임계의 가시화
1.2 왜 자바 머신러닝인가? Web → 모바일 → 분석(?)
1.3 왜 Weka인가? 무료/쉽고/신속 적용 가능
1.3.1 장점: 무료/쉽고/신속 적용 가능
1.3.2 단점: 메모리 문제, 무료 s/w 한계, 한글 인코딩
1.4 먼저 알아야 할 2개 지표(정분류율, 상관계수)

Chapter 02 What: 설치 프로그램
2.1 jre/jdk(Open JDK)
2.2 Weka 3.8.3 또는 Weka 3.9.3
2.3 Eclipse
2.4 다운로드 자료 강의 활용

Chapter 03 What: Weka 3.9.3
3.1 Weka
3.1.1 DIKW 관점 활용(why)
3.1.2 Weka 소개(what)
3.1.3 본서 구성(how)
3.1.4 학습 기대 효과(IF)
3.2 학습 방법 예시
3.2.1 실습: LinearRegression 알고리즘, regression_outliers.csv/arff 데이터셋
3.2.2 KnowledgeFlow 설계
3.2.3 Explorer 실습
3.2.4 Java 프로그래밍: W5_L1_OutlierWithCSV.java

Chapter 04 How: Weka 사용(전반)
4.1 인트로: arff 포맷, 필터링, 알고리즘, 시각화
4.1.1 소개
4.1.2 KnowledgeFlow
4.1.3 Explorer 사용
4.1.4 Datasets 살펴보기
4.1.5 분류 알고리즘 학습하기
4.1.6 필터 사용하기
4.1.7 Dataset을 시각화로 확인하기
4.2 모델평가
4.2.1 모델평가를 먼저 설명하는 이유
4.2.2 분할검증(Holdout): 훈련 데이터와 테스트 데이터를 처음부터 나눠서 검증한다
4.2.3 RandomSeed: 무작위로 데이터를 훈련과 테스트 데이터로 나눠 검증한다
4.2.4 가장 성능이 낮은 ZeroR 알고리즘보다 정분류율이 높은지 비교한다
4.2.5 n Cross-Validation: 훈련 및 테스트 데이터를 균등 분할하여 교차검증한다
4.3 결측값(pitfall)과 이상값(pratfall) 처리
4.4 초등 분류 알고리즘
4.4.1 OneR: 모든 목표변수는 단 한 개 속성으로 결정된다
4.4.2 NaiveBayes - 모든 속성을 중시함
4.4.3 J48: 대중적인 의사결정나무 But 과적합은 운명
4.4.4 IBk: k 군집 거리 측정 알고리즘, 적정 군집수 선별이 목적이다
4.5 중등 분류 학습 알고리즘
4.5.1 Boundary Visualizer: 2개 속성의 의사 결정 경계를 시각화한다
4.5.2 M5P: 선형회귀분석과 의사결정나무 분석을 동시에 학습한다
4.5.3 회귀 분류 1: 모든 숫자 속성을 선으로 분석한다(목표변수가 2가지의 경우)
4.5.4 회귀 분류 2: 모든 숫자 속성을 선으로 분석한다(목표변수가 3가지 이상의 경우)
4.5.5 로지스틱 회귀분석: 모 아니며 도의 구분을 알아낸다
4.5.6 서포트 벡터머신: SVM, 데이터 군집을 얼마나 떨어뜨릴 것인가?
4.5.7 앙상블 학습: 과적합을 피하기 위해 여러 알고리즘 결과를 투표로 선별한다

Chapter 05 IF: 전반부 정리
5.1 후반부에서 배울 것들

Chapter 06 What: 후반부 시작
6.1 전반부 복습
6.2 Experimenter(원시적인 AI)
6.2.1 기본 개념
6.2.2 통계적 유의미성 개념
6.2.3 분류 알고리즘 비교: 비교 자동화 = 원시적 A
6.2.4 Command Line Interface 및 JavaDoc
6.3 Weka 빅데이터(Big Data)

Chapter 07 How: Weka 사용(후반)
7.1 ROC(성능 판별 추가 지표)
7.2 텍스트마이닝
7.2.1 StringToWordVector
7.2.2 FilteredClassifier
7.2.3 MultiFilter
7.2.4 NaiveBayesMultinomial
7.3 이산화
7.3.1 비지도 이산화
7.3.2 지도 이산화
7.4 비지도 학습 연관/군집분석
7.4.1 지도 학습 vs. 비지도 학습
7.4.2 의사결정나무 비교
7.4.3 연관분석 기초
7.4.4 연관분석 응용
7.4.5 군집분석 개념
7.4.6 군집분석 평가
7.5 속성 선택과 결과 집중(개입)
7.5.1 중요 속성 기여도 선별(기초)
7.5.2 중요 속성 기여도 선별(응용)
7.5.3 라벨 결과 가중치 개입
7.6 인공신경망(딥러닝)
7.6.1 WekaDeeplearning4j(why)
7.6.2 Weka 패키지(what)
7.6.3 WekaDeeplearning4j 실습(how)
7.6.4 WekaDeeplearning4j 결론(if)
7.7 추가적인 성능 향상 기법
7.7.1 학습곡선
7.7.2 성능 최적화
7.7.3 arff 파일 추가 소개
7.7.4 학습 알고리즘(모델) 재사용

Chapter 08 IF: 후반부 정리

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.