장바구니 담기 close

장바구니에 상품을 담았습니다.

적대적 머신러닝

적대적 머신러닝

  • 앤서니조셉
  • |
  • 에이콘출판
  • |
  • 2020-06-30 출간
  • |
  • 492페이지
  • |
  • 188 X 235 X 28 mm
  • |
  • ISBN 9791161754208
판매가

40,000원

즉시할인가

36,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
36,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

목차


1부. 적대적 머신러닝의 개요

1장. 소개
1.1 동기
1.2 원칙에 입각한 시큐어 학습
1.3 시큐어 학습과 관련된 연구 동향
1.4 개요

2장. 배경 및 표기법
2.1 기본 표기법
2.2 통계적 머신러닝
2.2.1 데이터
2.2.2 가설공간
2.2.3 학습 모델
2.2.4 지도 학습
2.2.5 다른 학습 패러다임

3장. 시큐어 학습을 위한 프레임워크
3.1 학습 단계 분석
3.2 보안 분석
3.2.1 보안 목표
3.2.2 위협 모델
3.2.3 보안에서 머신러닝 응용프로그램에 관한 설명
3.3 프레임워크
3.3.1 분류 체계
3.3.2 적대적 학습 게임
3.3.3 적대적 능력의 특징
3.3.4 공격
3.3.5 방어
3.4 탐색적 공격
3.4.1 탐색적 게임
3.4.2 탐색적 무결성 공격
3.4.3 탐색적 가용성 공격
3.4.4 탐색적 공격에 대한 방어
3.5 인과적 공격
3.5.1 인과적 게임
3.5.2 인과적 무결성 공격
3.5.3 인과적 가용성 공격
3.5.4 인과적 공격에 대한 방어
3.6 반복 학습 게임
3.6.1 보안에서의 반복 학습 게임
3.7 프라이버시 보호 학습
3.7.1 차등 프라이버시
3.7.2 탐색적, 인과적 프라이버시 공격
3.7.3 임의성을 무시한 유용성

2부. 머신러닝에 관한 인과적 공격

4장. 초구 학습기를 대상으로 하는 공격
4.1 초구 탐지기에 대한 인과적 공격
4.1.1 학습 가정
4.1.2 공격 가정
4.1.3 해석적 방법론
4.2 초구 공격 설명
4.2.1 중심 이동
4.2.2 공격의 형식적 표현
4.2.3 공격 수열의 특징
4.3 최적 무제한 공격
4.3.1 최적 무제한 공격: 블록 쌓기
4.4 공격에 시간 제약 조건 추가
4.4.1 가변 질량의 블록 쌓기
4.4.2 대안 공식
4.4.3 최적 완화 해
4.5 데이터 치환 재교육을 대상으로 하는 공격
4.5.1 평균제거 치환과 임의제거 치환 정책
4.5.2 최근접제거 치환 정책
4.6 제한된 공격자
4.6.1 탐욕 최적 공격
4.6.2 혼합 데이터 공격
4.6.3 확장
4.7 요약

5장. 가용성 공격 사례 연구: 스팸베이즈
5.1 스팸베이즈 스팸 필터
5.1.1 스팸베이즈 훈련 알고리즘
5.1.2 스팸베이즈 예측
5.1.3 스팸베이즈 모델
5.2 스팸베이즈의 위협 모델
5.2.1 공격자의 목표
5.2.2 공격자의 지식
5.2.3 훈련 모델
5.2.4 오염 가정
5.3 스팸베이즈 학습기에 대한 인과적 공격
5.3.1 인과적 가용성 공격
5.3.2 인과적 무결성 공격-유사 스팸
5.4 부정적인 영향 거부(RONI) 방어
5.5 스팸베이즈 실험
5.5.1 실험 방법
5.5.2 사전 공격 결과
5.5.3 집중 공격 결과
5.5.4 유사 스팸 공격 실험
5.5.5 부정적인 영향 거부 결과
5.6 요약

6장. 무결성 공격 사례 연구: PCA 탐지기
6.1 이상 트래픽 탐지를 위한 PCA 방법
6.1.1 트래픽 행렬과 용량 이상
6.1.2 이상 탐지를 위한 부분공간 방법
6.2 PCA 부분공간의 오염
6.2.1 위협 모델
6.2.2 정보 없이 쭉정이 선택
6.2.3 국소 정보 쭉정이 선택
6.2.4 전역 정보 쭉정이 선택
6.2.5 개구리 삶기 공격
6.3 오염에 복원력이 있는 탐지기
6.3.1 직감
6.3.2 PCA-격자
6.3.3 강건한 라플라스 한계점
6.4 경험적 평가
6.4.1 설정
6.4.2 취약한 흐름 식별
6.4.3 공격 평가
6.4.4 해독제 평가
6.4.5 개구리 삶기 중독 공격의 경험적 평가
6.5 요약

3부. 머신러닝에 대한 탐색적 공격

7장. SVM 학습의 프라이버시 보호 메커니즘
7.1 프라이버시 침해 사례 연구
7.1.1 매사추세츠주 공무원 건강 기록
7.1.2 AOL 검색 질의 로그
7.1.3 넷플릭스 영화 평가 데이터 예측 대회
7.1.4 가명 기반의 트위터의 탈익명화
7.1.5 전장유전체연관분석
7.1.6 마이크로타기팅 광고
7.1.7 교훈
7.2 문제 설정: 프라이버시 보호 학습
7.2.1 차등 프라이버시
7.2.2 유용성
7.2.3 차등 프라이버시의 역사적 연구 방향
7.3 SVM: 간략한 소개
7.3.1 평행변환 -불변 커널
7.3.2 알고리즘 안전성
7.4 출력 섭동에 의한 차등 프라이버시
7.5 목표 섭동에 의한 차등 프라이버시
7.6 유한차원 특성공간
7.7 최적 차등 프라이버시에 대한 경계
7.7.1 상계
7.7.2 하계
7.8 요약

08 분류기의 근사-최적 회피
8.1 근사 -최적 회피 특징
8.1.1 적대적 비용
8.1.2 근사 -최적 회피
8.1.3 탐색 용어
8.1.4 승법 최적성 대 가법 최적성
8.1.5 볼록 -유도 분류기 모임
8.2 비용에 대한 볼록 클래스의 회피
8.3 일반 lp 비용에 대한 회피
8.3.1 볼록 양의 집합
8.3.2 볼록 음의 집합
8.4 요약
8.4.1 근사 -최적 회피에 관한 미해결 문제
8.4.2 대안 회피 기준
8.4.3 실제 회피

4부 적대적 머신러닝의 연구 방향
09 적대적 머신러닝의 도전 과제
9.1 토론과 미해결 문제
9.1.1 적대적 게임의 미개척 구성 요소
9.1.2 방어 기술 개발
9.2 미해결 문제 검토
9.3 끝맺는 말


부록

부록 A. 학습과 초기하학의 배경
A.1 일반적인 배경 주제 개요
A.2 초구 덮개
A.3 초입방체 덮개

부록 B. 초구 공격에 대한 전체 증명
B.1 정리 4.7의 증명
B.2 정리 4.14의 증명
B.3 정리 4.15의 증명
B.4 정리 4.16의 증명
B.5 정리 4.18의 증명

부록 C. 스팸베이즈 분석
C.1 스팸베이즈의 I(ㆍ) 메시지 점수
C.2 스팸베이즈에 대한 최적 공격 구성

부록 D. 근사-최적 회피에 대한 전체 증명

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.