장바구니 담기 close

장바구니에 상품을 담았습니다.

Multivariate Time Series Analysis and Applications

Multivariate Time Series Analysis and Applications

  • Wei, William, W. S.
  • |
  • Wiley
  • |
  • 2019-03-18 출간
  • |
  • 680페이지
  • |
  • English
  • |
  • ISBN 9781119502852
판매가

132,430원

즉시할인가

131,106

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
131,106

이 상품은 품절된 상품입니다

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

목차


About the author

Preface

Chapter 1 Fundamental Concepts and Issues of Multivariate Time Series Analysis

1.1 Introduction

1.2 Fundamental Concepts

1.2.1 Correlation and Partial Correlation Matrix Functions

1.2.2 Vector White Noise Process

1.2.3 Moving Average and Autoregressive Representations of Vector Processes

Projects

References

Chapter 2 Vector Time Series Models

2.1 Vector Moving Average Processes

2.2 Vector Autoregressive Processes

2.3 Vector Autoregressive Moving Average Processes

2.4 Nonstationary Vector Autoregressive Moving Average Processes

2.5 Vector Time Series Model Building

2.5.1 Identification of Vector Time Series Models

2.5.2 Sample Moments of a Vector Time Series

2.5.3 Parameter Estimation, Diagnostic Checking, and Forecasting

2.5.4 Cointegration in Vector Time Series

2.6 Seasonal Vector Time Series Model

2.7 Multivariate Time Series Outliers

2.7.1 Types of Multivariate Time Series Outliers and Detections

2.7.2 Outlier Detection Through Projection Pursuit

2.8 Empirical Examples

2.8.1 First Model on U.S. Monthly Retail Sales Revenue

2.8.2 Second Model on U.S. Monthly Retail Sales Revenue

2.8.3 U.S. Macroeconomic Indicators

2.8.4 Unemployment Rates with Outliers

Software Code

Projects

References

Chapter 3 Multivariate Time Series Regression Models

3.1 Introduction

3.2 Multivariate Multiple Time Series Regression Models

3.2.1 Classical Multiple Regression Model

3.2.2 Multivariate Multiple Regression Model

3.3 Estimation of Multivariate Multiple Time Series Regression Model

3.3.1 The Generalized Least Squares (GLS) Estimation

3.3.2 Empirical Example I ? U.S. Retail Sales and Some National Indicators

3.4 Vector Time Series Regression Models

3.4.1 Extension of a VAR Model to VARX Models

3.4.2 Empirical Example II ? VARX Model for U.S. Retail Sales and Some National Indicators

3.5 Empirical Example III ? Total Mortality and Air Pollution in California Software Code

Projects

References

Chapter 4 Principle Component Analysis of Multivariate Time Series

4.1 Introduction

4.2 Population Principal Component Analysis

4.3 Implications of Principal Component Analysis

4.4 Sample Principle Components

4.5 Empirical Examples

4.5.1 Daily Stock Returns from the First Set of Ten Stocks

4.5.2 Monthly Consumer Price Index (CPI) from Five Sectors

Software Code

Projects

References

Chapter 5 Factor Analysis of Multivariate Time Series

5.1 Introduction

5.2 The Orthogonal Factor Model

5.3 Estimation of the Factor Model

5.3.1 The Principal Component Method

5.3.2 Empirical Example I ? Model 1 on Daily Stock Returns from the Second Set of Ten Stocks

5.3.3 The Maximum Likelihood Method

5.3.4 Empirical Example II ? Model 2 on Daily Stock Returns from the Second Set of Ten Stocks

5.4 Factor Rotation

5.4.1 Orthogonal Rotation

5.4.2 Oblique Rotation

5.4.3 Empirical Example III ? Model 3 on Daily Stock Returns from the Second Set of Ten Stocks

5.5 Factor Scores

5.5.1 Introduction

5.5.2 Empirical Example IV ? Model 4 on Daily Stock Returns from the Second Set of Ten Stocks

5.6 Factor Models with Observable Factors

5.7 Another Empirical Example ? Yearly U.S. Sexually Transmitted Disease (STD)

5.7.1 Principal Component Analysis (PCA)

5.7.1.1 PCA for Standardized

5.7.1.2 PCAforUnstandardized

5.7.2 Factor Analysis

5.8 Concluding Remarks

Software Code

Projects

References

Chapter 6 Multivariate GARCH Models

6.1 Introduction

6.2 Representations of Multivariate GARCH Models

6.2.1 VEC and DVEC Models

6.2.2 Constant Conditional Correlation (CCC) Models

6.2.3 BEKK Models

6.2.4 Factor Models

6.3 O-GARCH and GO-GARCH Models

6.4 Estimation of GO-GARCH Models

6.4.1 The Two Step Estimation Method

6.4.2 The Weighted Scatter Estimation Method

6.5 Properties of the Weighted Scatter Estimator

6.5.1 Asymptotic Distribution and Statistical Inference

6.5.2 Combining Information from Different Weighting Functions

6.6 Empirical Examples

6.6.1 U.S. Weekly Interest Over Time on Six Exercise Items

6.6.2 Daily Log-returns of the SP 500 Index and Three Financial Stocks

6.6.3 The Analysis of Dow Jones Industrial Average of 30 Stocks

Software Code

Projects

References

Chapter 7 Repeated Measurements

7.1 Introduction

7.2 Multivariate Analysis of Variance

7.2.1 Test Treatment Effects

7.2.2 Empirical Example I - First Analysis on Body Weight of Rats Under Three Different Treatments

7.3 Models Utilizing Time Series Structure

7.3.1 Fixed Effects Model

7.3.2 Some Common Variance-Covariance Structures

7.3.3 Empirical Example II - Further Analysis on Body Weight of Rats Under Three Different Treatments

7.3.4 Random Effects and Mixed Effects Models

7.4 Nested Random Effects Model

7.5 Further Generalization and Remarks

7.6 Another Empirical Example - The Oral Condition of Neck Cancer Patients

Software Code

Projects

References

Chapter 8 Space-Time Series Models

8.1 Introduction

8.2 Space-Time Autoregressive Integrated Moving Average (STARIMA) Models

8.2.1 Spatial Weighting Matrix

8.2.2 STARIMA Models

8.2.3 STARMA Models

8.2.4 ST-ACF and ST-PACF

8.3 Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) Models

8.4 Iterative Model Building of STARMA and GSTARMA Models

8.5 Empirical Examples

8.5.1 Vehicular Theft Data

8.5.2 The Annual U.S. Labor Force Count

8.5.3 U.S. Yearly Sexually Transmitted Disease Data

Software Code

Projects

References

Chapter 9 Multivariate Spectral Analysis of Time Series

9.1 Introduction

9.2 Spectral Representations of Multivariate Time Series Processes

9.3 The Estimation of the Spectral Density Matrix

9.3.1 The Smoothed Spectrum Matrix

9.3.2 Multitaper Smoothing

9.3.3 Smoothing Spline

9.3.4 Bayesian Method

9.3.5 Penalized Whittle Likelihood

9.3.6 VARMA Spectral Estimation

9.4 Empirical Examples of Stationary Vector Time Series

9.4.1 Sample Spectrum

9.4.2 Bayesian Method

9.4.3 Penalized Whittle Likelihood Method

9.4.4 Example of VAR Spectrum Estimation

9.5 Spectrum Analysis of Nonstationary Vector Time Series

9.5.1 Introduction

9.5.2 Spectrum Representations of a Nonstationary Multivariate Process

9.5.2.1 Time-varying Autoregressive Model

9.5.2.2 Smoothing Spline ANOVA Model

9.5.2.3 Piecewise Vector Autoregressive Model

9.5.2.4 Bayesian Methods

9.6 Empirical Spectrum Example of Nostationary Vector Time Series

Software Code

Projects

References

Chapter 10 Dimension Reduction in High Dimensional Multivariate Time Series Analysis

10.1 Introduction

10.2 Existing Methods

10.2.1 Regularization Methods

10.2.1.1 The Lasso Method

10.2.1.2 The Lag-weighted Lasso Method

10.2.1.3 The Hierarchical Vector Autoregression (HVAR) Method

10.2.2 The Space-Time AR (STAR) Model

10.2.3 The Model-based Cluster Method

10.2.4 The Factor Analysis

10.3 The Proposed Method for High Dimension Reduction

10.4 Simulation Studies

10.4.1 Scenario 1

10.4.2 Scenario 2

10.4.3 Scenario 3

10.5 Empirical Examples

10.5.1 The Macroeconomic Time Series

10.5.2 The Yearly U.S. Sexually Transmitted Disease Data

10.6 Further Discussions and Remarks

10.6.1 More on Clustering

10.6.2 Forming Aggregate Data Through Both Time Domain and Frequency Domain Clustering

10.6.3 The Specification of Aggregate Matrix and Its Associated Aggregate Dimension

10.6.4 Be Aware of Other Forms of Aggregation

Appendix: Parameter Estimation Results of Various Procedures

Software Code

Projects

References

Data Appendix (Bookdata)

Author Index

Subject Index

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.