장바구니 담기 close

장바구니에 상품을 담았습니다.

딥러닝 모델 설계를 떠받치는 기술

딥러닝 모델 설계를 떠받치는 기술

  • 마이크베르니코
  • |
  • 위키북스
  • |
  • 2019-01-24 출간
  • |
  • 296페이지
  • |
  • 175 X 235 mm
  • |
  • ISBN 9791158391324
판매가

25,000원

즉시할인가

22,500

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
22,500

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평




★ 이 책에서 다루는 내용 ★

◎ 텐서플로와 케라스를 사용해 회귀 문제와 분류 문제 풀기
◎ 텐서보드 사용법을 배워 신경망을 관찰하며 훈련하기
◎ 하이퍼파라미터 최적화와 안전한 선택지를 택하는 방법과 모범 사례 배우기
◎ CNN, RNN, LSTM 신경망을 빌드하고 처음부터 워드 임베딩 사용하기
◎ 기계번역 애플리케이션이나 채팅 애플리케이션에 쓸 seq2seq 모델을 구축하고 훈련하기
◎ 심층 Q 신경망을 이해하고 이를 활용해 자율 에이전트 문제 해결하기
◎ 심층 Q 신경망을 탐색하고 자율 에이전트 문제 처리하기

★ 주요 특징 ★

◎ 딥러닝의 핵심 개념과 각 개념을 구현하는 기술을 신속히 찾아 볼 수 있다.
◎ CNN, RNN, LSTM 같은 다양한 딥러닝 모델을 훈련하는 데 필수적인 조언, 요령, 기법 등을 제시한다.
◎ 필수 수학과 필수 이론으로 보강한 각 장에서 케라스 및 텐서플로를 사용해 모델을 훈련하고 정밀하게 조율하기 위한 모범 사례와 안전한 선택지를 제시한다.


목차


▣ 01장: 딥러닝 건축 재료
심층 신경망 아키텍처
__뉴런
__딥러닝의 손실 함수와 비용 함수
__순전파 과정
__역전파 함수
__확률적 경사 하강과 미니배치 경사 하강
딥러닝을 위한 최적화 알고리즘
__경사 하강 시 운동량을 사용하기
__RMSProp 알고리즘
__Adam 최적화기
딥러닝 프레임워크
__텐서플로란 무엇인가?
__케라스란 무엇인가?
__텐서플로의 인기 있는 대안들
__텐서플로와 케라스에 필요한 GPU
__엔비디아 CUDA 툴킷과 cuDNN 설치
__파이썬 설치
__텐서플로와 케라스 설치
딥러닝용 데이터셋 구축
__딥러닝의 편향 오차 및 분산 오차
__train, val, test 데이터 집합
__심층 신경망의 편향과 분산 관리
__k 겹 교차 검증
요약

▣ 02장: 딥러닝으로 회귀 문제를 풀기
회귀 분석과 심층 신경망
__회귀 분석에 신경망을 사용할 때의 이점
__회귀 분석에 신경망을 사용할 때의 단점
회귀 분석에 심층 신경망을 사용하기
__머신러닝 문제를 계획하는 방법
__예제에 쓸 문제를 정의하기
__데이터셋 적재
__비용 함수 정의
케라스로 MLP를 구축하기
__입력 계층의 모양
__은닉 계층의 모양
__출력 계층의 모양
__신경망 아키텍처
__케라스 모델을 훈련하기
__모델의 성능을 측정하기
케라스로 심층 신경망을 구축하기
__심층 신경망 성능 측정
__모델의 하이퍼파라미터 조율
훈련된 케라스 모델을 저장하고 적재하기
요약

▣ 03장: 텐서보드로 신경망의 훈련 과정을 살펴보기
텐서보드에 대한 개요
텐서보드를 설정하기
__텐서보드 설치
__텐서보드가 케라스/텐서플로와 대화하는 방법
__텐서보드 실행
케라스와 텐서보드를 연결하기
__케라스 콜백 소개
__텐서보드 콜백을 생성하기
텐서보드를 사용하기
__훈련 시각화
__신경망 그래프 시각화
__문제가 생긴 신경망을 시각화하기
요약

▣ 04장: 딥러닝으로 이진 분류 문제를 풀기
이진 분류 및 심층 신경망
__심층 신경망의 장점
__심층 신경망의 단점
사례 연구: 간질 발작 인식
__데이터셋 정의하기
__데이터를 적재하기
__모델의 입력과 출력
__비용 함수
__계량을 사용해 성능을 평가하기
케라스에서 이진 분류기를 만들기
__입력 계층
__은닉 계층
__출력 계층
__종합하기
__모델을 훈련하기
케라스에서 검사점 콜백을 사용하기
사용자 지정 콜백에서 ROC AUC를 측정하기
정밀도, 재현율 및 f1 점수 측정하기
요약

▣ 05장: 케라스로 다중 클래스 분류 문제를 풀기
다중 클래스 분류와 관련된 심층 신경망
__장점
__단점
사례 연구: 손글씨 숫자 분류
__문제 정의
__모델 입력 및 출력
__비용 함수
__계량
케라스로 다중 클래스 분류기를 만들기
__MNIST 적재
__입력 계층
__은닉 계층
__출력 계층
__종합하기
__훈련
__다중 클래스 모델에서 사이킷런의 계량을 사용하기
드롭아웃을 사용해 분산을 통제하기
정칙화를 사용해 분산을 통제하기
요약

▣ 06장: 하이퍼파라미터 최적화
신경망 아키텍처도 하이퍼파라미터라고 생각해야 하는가?
__거인의 어깨 위에 서기
__과적합이 될 때까지 추가한 다음에 정칙화하기
__실천적 조언
어떤 하이퍼파라미터를 최적화해야 하는가?
하이퍼 파라미터 최적화 전략으로는 어떤 것들이 있는가?
__공통 전략 93
__사이킷런의 임의 탐색 기능을 사용하기
__하이퍼밴드
요약

▣ 07장: CNN을 처음부터 훈련하기
합성곱 소개
__합성곱의 계층은 어떻게 작용하는가?
__합성곱 계층의 이점
__풀링 계층
__배치 정규화
케라스에서 합성곱 신경망을 훈련하기
__입력
__출력
__비용 함수와 계량
__합성곱 계층
__완전 연결 계층
__케라스의 다중 GPU 모델
__훈련
데이터를 확대하기
__케라스의 ImageDataGenerator
__생성기를 사용한 훈련
요약

▣ 08장: 사전 훈련 CNN을 사용한 전이 학습
전이 학습의 개요
전이 학습을 사용해야만 하는 때
__제한된 데이터
__공통 문제 정의역
원본 및 대상의 크기와 유사도의 영향
__더 많은 데이터가 항상 유용하다
__원본/대상 정의역 유사도
케라스로 하는 전이 학습
__대상 정의역 개요
__원본 정의역 개요
__원본 신경망 아키텍처
__전이 신경망 아키텍처
__데이터 준비
__데이터 입력
__훈련(특징 추출)
__훈련(미세 조정)
요약

▣ 09장: RNN을 처음부터 훈련하기
재귀 신경망
__뉴런이 재귀하는 이유는?
__장단기 기억 신경망
__시간 펼침 역전파
시계열 문제
__저량 및 유량
__ARIMA 및 ARIMAX 예측
LSTM을 사용한 시계열 예측
__데이터 준비
__신경망 출력
__신경망 아키텍처
__상태 저장 및 상태 비저장 LSTM
__훈련
__성능 측정
요약

▣ 10장: 처음부터 워드 임베딩으로 LSTM을 훈련하기
자연어 처리 소개
__의미 분석
__문서 분류
텍스트 벡터화
__NLP 용어
__단어 주머니 모델
__어간 추출, 표제어 추출 및 불용어
__계수 벡터화와 TF-IDF 벡터화
워드 임베딩
__간단한 예제
__예측을 통한 워드 임베딩 학습
__셈을 통한 워드 임베딩 학습
__단어에서 문서로 가져오기
케라스 임베딩 계층
자연어 처리를 위한 1D CNN
문서 분류에 대한 사례 연구
__케라스 임베딩 계층 및 LSTM을 이용한 정서 분석
__GloVe를 사용하는 문서 분류와 사용하지 않는 문서 분류
__데이터 준비
요약

▣ 11장: Seq2Seq 모델을 훈련하기
시퀀스-투-시퀀스 모델
__시퀀스-투-시퀀스 모델 응용
__시퀀스-투-시퀀스 모델의 아키텍처
__문자 대 단어
__교사 강요
__주의집중
__번역 계량
기계 번역
__데이터를 이해하기
데이터를 적재하기
__원핫인코딩
__신경망 아키텍처를 훈련하기
__신경망 아키텍처(추론용)
__종합하기
__훈련
__추론
요약

▣ 12장: 심층강화학습을 사용하기
강화학습 개요
__마르코프 결정 과정
__Q 학습
__무한 상태 공간
__심층 Q 신경망
__이용 대 탐색
__딥마인드
케라스 강화학습 프레임워크
__Keras-RL 설치
__OpenAI gym 설치
__OpenAI gym 사용하기
케라스에서 강화학습 에이전트를 구축하기
__카트폴
__루나랜더
요약

▣ 13장: 생성적 적대 신경망
GAN의 개요
심층 합성곱 GAN의 아키텍처
__적대적 훈련 아키텍처
__생성기 아키텍처
__판별기 아키텍처
__적층한 훈련
GAN 훈련에 실패하는 방법
__안정성
__최빈값 붕괴
GAN을 위한 안전한 선택지
케라스 GAN을 사용해 MNIST 이미지를 생성하기
__데이터셋을 적재하기
__생성기를 구축하기
__판별기를 구축하기
__적층 모델을 구축하기
__훈련 루프
__모델 평가
케라스 GAN을 사용해 CIFAR-10 이미지를 생성하기
__CIFAR-10을 적재하기
__생성기를 구축하기
__판별기 구축
__훈련 루프
__모델을 평가하기
요약

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.