장바구니 담기 close

장바구니에 상품을 담았습니다.

파이썬으로 구현하는 고급 머신 러닝

파이썬으로 구현하는 고급 머신 러닝

  • 존 하티
  • |
  • 에이콘출판
  • |
  • 2017-08-17 출간
  • |
  • 376페이지
  • |
  • 188 X 235 X 22 mm
  • |
  • ISBN 9791161750354
판매가

33,000원

즉시할인가

29,700

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
29,700

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

■ 첨단 딥러닝 알고리즘에 대한 실질적이고 이론적인 이해를 돕기 위한 최고 수준의 데이터 과학자의 성과 비교
■ 모든 기술에 대해 깔끔하게 설명된 코드와 테스트 실행 결과를 통해 신규 기술이 실제로 접할 수 있는 문제의 적용과 해결
■ 대규모의 복잡한 데이터 자동화와 이를 통해 장시간 작업을 필요로 하는 문제점의 극복 방안
■ 강력한 피처 엔지니어링 기술을 사용한 기존의 입력 데이터와 분석 모델의 정확도 향상방법
■ 분석 결과의 일관성을 향상시키기 위한 여러 가지 학습 기술 활용 방법
■ 폭넓은 비지도 학습 기법을 이용해 데이터셋에 숨겨진 패턴/구조 분석과 이해
■ 어렵고 과감한 도전이 필요한 문제에 대한 전문가들의 효과적이고 반복적으로 검증에 초점을 맞춘 방법 소개
■ 여러 가지 분석 모델을 함께 묶어 활용하는 강력한 앙상블 기술을 통해 딥러닝 모델을 더 효과적으로 만드는 방법

★ 이 책의 대상 독자 ★
최근 몇 년 사이 급부상한 고급 분석 모델링 기술에 초점을 맞춰 이 책을 읽기 바란다. 이 책은 많은 경험을 보유한 데이터 과학자와 기존 기술을 새로운 환경에 적용하려는 개발자에 상관없이 고급 분석 알고리즘을 공부하고자 하는 독자 모두를 대상으로 한다.

★ 이 책의 구성 ★
1장, '비지도 머신 러닝'에서는 데이터셋에 담긴 패턴과 구조를 파악하기 위해 비지도 학습을 어떻게 적용하는지 알아본다.
2장, 'DBN(Deep Belief Networks)'에서는 RBM과 DBN 알고리즘이 어떻게 동작하는지 자세히 설명한다. 이를 어떻게 사용하는지 알게 될 것이다. 그리고 결과에 대한 퀄리티를 향상시킬 수 있는 능력도 확실히 얻을 수 있을 것이다.
3장, 'SdA'에서는 고차원 입력 데이터의 피처 모델 학습에 SdA를 적용하는 방법을 통해 딥 아키텍처 형태로 모델을 만드는 방법을 계속 살펴본다.
4장, '컨볼루션 신경망(CNN)'에서는 컨볼루션 신경망(Convnet)를 어떻게 적용하는지 소개한다.
5장, '준지도 학습'에서는 다양한 준지도 학습을 어떻게 적용하는지 설명한다. 주요 기법으로는 CPLE, 자가 학습(self-learning), S3VM 등이 있다
6장, '텍스트 피처 엔지니어링'에서는 앞에서 다룬 모델에 대한 효과를 더욱 높일 수 있도록 데이터를 잘 준비하는 기술에 대해 알아본다.
7장, '피처 엔지니어링 II'에서는 (1) 데이터 퀄리티 문제를 완화하거나, (2) 머신 러닝에 도움이 되는 형식으로 데이터를 변환하든지, 또는 (3) 해당 데이터를 창의적으로 향상시키기 위해 데이터를 자세히 조사하고 정보를 얻는 방법 등을 소개한다.
8장, '앙상블 기법'에서는 세련된 모델 앙상블을 구현하는 방법과 분석 모델 솔루션에 대한 로버스트니스를 갖게 하는 기법 등을 살펴본다.
9장, '파이썬 머신 러닝 관련 추가 툴'에서는 우선 데이터 과학자가 사용할 수 있는 최신 툴 중 어떤 것들이 있는지 자세히 알아본다. 또한 이러한 툴이 어떤 장점이 있는지도 확인한다. 이 외에도 이 책의 앞부분에서 소개하는 툴과 기술을 일관된 작업 프로세스에 어떻게 적용하는지에 대해서도 살펴본다.
부록, '장별 코드 준비 사항'에서는 장 별로 준비해야 하는 라이브러리들과 이 책을 학습하는 데 필요한 툴을 요약 정리한다.

목차

1장. 비지도 머신 러닝
__주성분 분석(PCA)
____PCA: 기초
____PCA 활용
__K-평균 클러스터링
____클러스터링: 기초
____클러스터링 분석
____클러스터링 환경 변수 튜닝
__SOM(Self-organizing maps)
____SOM 알고리즘의 기초
____SOM 알고리즘 활용
__참고 문헌
__요약

2장. 심층 신뢰망(DBN)
__신경망: 기본 개념
____신경망의 구성
____네트워크 토폴로지
__제한된 볼츠만 머신(RBM)
____RBM의 소개
______토폴로지
______학습
____RBM 애플리케이션
____RBM 애플리케이션 추가 사항
__심층 신뢰망(DBN)
____DBN 학습
____DBN 애플리케이션
____DBN 검증
__참고 문헌
__요약

3장. SdA
__오토인코더
____오토인코더 소개
______토폴로지
______학습
____dA
____dA 응용
__SdA
____SdA 응용
____SdA 성능 평가
__참고 문헌
__요약

4장. 컨볼루션 신경망(CNN)
__CNN의 소개
____컨볼루션 신경망 토폴로지
______컨볼루션 레이어
______풀링 레이어
______convnet 학습
______종합 정리
____CNN의 응용
__참고 문헌
__요약

5장. 준지도 학습
__소개
__준지도 학습의 이해
__준지도 학습 알고리즘의 실제
____자가 학습
______자가 학습 구현
______자가 학습 구현에 대한 세부 조정
__CPLE
__참고 문헌
__요약

6장. 텍스트 피처 엔지니어링
__소개
__텍스트 피처 엔지니어링
____텍스트 데이터 정제
______BeautifulSoup을 이용한 텍스트 정제
______구두점과 토큰화 관리
______단어의 태깅 및 카테고리화
____텍스트 데이터에서 피처 생성
____어근 추출
____배깅과 랜덤 포레스트
____준비된 데이터의 테스팅
__참고 문헌
__요약

7장. 피처 엔지니어링 II
__소개
__피처 세트 생성
____머신 러닝 애플리케이션을 위한 피처 엔지니어링
______피처의 학습 정도 향상을 위한 리스케일링 기술의 이용
______도출된 변수의 효과적인 생성
______숫자가 아닌 피처의 재해석
____피처 셀렉션 기술의 이용
______피처 셀렉션 수행
__실제 문제에서 피처 엔지니어링
____RESTful API를 통한 데이터 확보
______모델의 성능 테스트
______트위터
______피처 엔지니어링 기술을 이용한 변수 도출 및 선택
__참고 문헌
__요약

8장. 앙상블 기법
__앙상블의 소개
____평준화 기법
______배깅 알고리즘을 이용
______랜덤 포레스트를 사용
____부스팅 기법 응용
______XGBoost를 이용
______스태킹 앙상블 사용
____실제 문제에 앙상블 응용
__다이내믹 애플리케이션에서 모델 사용
____모델 로버스트니스 이해
______위험 요소 모델링 파악
____모델 로버스트니스 관리 전략
__참고 문헌
__요약

9장. 파이썬 머신 러닝 관련 추가 툴
__대안 개발 툴
____라자냐 소개
______라자냐 학습
____텐서플로 소개
______텐서플로 학습
______모델을 반복적으로 향상시키기 위한 텐서플로 사용
____라이브러리 사용 시 알아둘 점
__참고 문헌
__요약

저자소개

저자 존 하티는 디지털 회사의 컨설턴트로, 데이터 사이언스와 인프라스트럭처 엔지니어링 분야의 전문가다. 모바일 게임에서부터 미국 자동차 보험회사인 콘솔 분석에 AAA 관련된 고난도의 문제까지 다뤄왔다.
고급 머신 러닝 기술을 실제 문제에 적용하기 시작하면서 XBox 플랫폼에서 플레이어 모델링 기능과 대규모 데이터 인프라스트럭처를 개발하기 위해 마이크로소프트와 계약을 체결했다. 그가 속한 팀은 엔지니어링, 데이터 과학 분야에서 획기적인 진전을 이루며, 결과물에 대해 Microsoft Studio에서 복제해가기도 했다.
이러한 경험을 통해 결국 존은 새로운 통찰력이나 데이터에 기반을 둔 역량을 추구하는 국내외 고객을 위한 포괄적인 인프라 및 분석 솔루션을 제공하는 컨설턴트가 됐다. 그가 현재 가장 의욕적으로 수행 중인 계약 프로젝트는 주요 소셜 네트워크에 대한 예측 분석 모델을 만들고 사용자들 간의 연결 관계에 대한 중요성을 정량화하는 것이다. 수년간 데이터 작업에 몰두한 결과 존은 끊임없는 질문을 통해 궁금증을 해결하려고 한다. 개인적인 관심사를 충족시키기 위해 파이썬으로 매일매일 ML 솔루션을 개발하고 있다. 여기에는 StyleNet computational creativity 알고리즘의 파생 버전과 algo-trading 및 geolocation 기반의 추천 등을 위한 솔루션이 포함돼 있다.

도서소개

과거 오랜 기간 어려움을 겪었던 문제의 해결 방안이 등장하면서 최근 몇 년 사이 머신 러닝 분야는 발전 속도는 가히 폭발적이다. 특히 신경망 기반 접근 방법은 딥러닝이라는 기술로 큰 도약을 이뤘다 하겠다. 이 책에서는 이러한 머신 러닝에서 폭넓게 사용되는 핵심 알고리즘을 비롯해 최근 각광받고 있는 다양한 딥러닝 관련 대표 알고리즘들을 친절하고 자세하게 설명한다. 이미지 분류 등에서 높은 성능 향상을 보인 컨볼루션 신경망(CNN) 외에도 제한된 볼츠만 머신(RBM), 심층 신뢰망(DBN), SdA 등을 예제 데이터와 파이썬 코드를 이용해 직접 익힐 수 있게 한다. 뿐만 아니라 캐글(Kaggle)에서 높은 성능을 보인 기법도 쉽게 참고할 수 있게 한 점이 돋보인다. 참고 문헌으로 제공하는 풍부한 연구 지식을 통해서도 실력을 향상시킬 수 있을 것으로 기대한다.

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.