장바구니 담기 close

장바구니에 상품을 담았습니다.

텐서플로 입문

텐서플로 입문

  • 잔카를로 자코네
  • |
  • 에이콘출판
  • |
  • 2016-10-20 출간
  • |
  • 208페이지
  • |
  • 188 X 235 X 18 mm /511g
  • |
  • ISBN 9788960779198
★★★★★ 평점(10/10) | 리뷰(1)
판매가

20,000원

즉시할인가

18,000

배송비

무료배송

(제주/도서산간 배송 추가비용:3,000원)

수량
+ -
총주문금액
18,000

※ 스프링제본 상품은 반품/교환/환불이 불가능하므로 신중하게 선택하여 주시기 바랍니다.

출판사서평

★ 이 책에서 다루는 내용 ★

■ 수학적 문제 해결을 위한 텐서플로 환경 구축
■ 머신 러닝과 딥 러닝 기본 개념 학습
■ 데이터 모델 구축을 위한 인공 신경망 학습 및 검증
■ 회귀 알고리즘을 이용한 예측
■ 군집화를 통한 데이터 분석
■ 군집화와 데이터 분류를 위한 알고리즘 개발
■ 빅데이터 분석을 위한 GPU 컴퓨팅 구현

★ 이 책의 대상 독자 ★

프로그래밍과 수학에 대한 기본 지식이 있으며, 머신 러닝과 딥 러닝을 배우고 싶어 하는 사람을 대상으로 한다. 이 책의 내용을 숙지한다면 텐서플로의 기능을 이용해 강력한 애플리케이션을 제작할 수 있다.

★ 이 책의 구성 ★

1장, ‘텐서플로: 기초’에서는 텐서플로 구조의 전반적인 내용과 개발 배경, 파이썬 프로그래밍 가이드라인을 설명한다. 텐서플로 설치 방법과 세션을 구동시키는 방법, 그리고 최적화와 디버깅에서 사용하는 텐서보드(TensorBoard)에 대해서도 다룬다.
2장, ‘텐서플로 기초 연산’에서는 텐서플로의 수학 연산 기능에 대해 설명한다. 텐서플로의 기초 자료형을 설명하고, 이를 통해 가장 기본적인 연산부터 복잡한 편미분 방정식까지 풀어본다. 텐서플로에서 주요하게 다루는 자료 구조인 텐서(tensor)에 대해서도 설명한다.
3장, ‘머신 러닝 시작’에서는 머신 러닝 모델에 대해 설명한다. 데이터 간 유사성을 특징으로 사용하는 선형 회귀 알고리즘을 직접 구현해보면서 데이터 간의 연관성에 대해 알아본다. 머신 러닝의 학습 방법은 크게 분류(Classification)와 군집화(Clustering)의 두 가지로 나눌 수 있다. 분류는 새로운 데이터가 입력되면 미리 정의된 카테고리로 나누는 방법이며, 군집화는 비슷한 데이터끼리 그룹을 만드는 방법이다.
4장, ‘인공 신경망 소개’에서는 신경망에 대해 간단하면서도 자세히 설명한다. 인공 뉴런의 연결 구조는 사람의 뉴런이 행동하는 방식을 모방하도록 수학적으로 모델링돼 있다. 즉, 인공 뉴런은 실제 뉴런의 특성을 모방하도록 수학적으로 구성됐다고 할 수 있으며, 신경망(Neural Network)은 인공 뉴런을 연결해서 딥 러닝 알고리즘을 구성한 것이다. 단일 계층 퍼셉트론(Single Layer Perceptron)과 다중 계층 퍼셉트론(Multi Layer Perceptron)이 가장 기본적인 신경망이라 할 수 있으며, 이를 이용해 데이터를 분류해본다.
5장, ‘딥 러닝’에서는 딥 러닝 알고리즘을 다룬다. 최근 몇 년 동안 딥 러닝은 급격히 성장해, 과거에는 불가능하게 여겼던 문제를 해결하고 있다. 딥 러닝에서 가장 중요하게 다뤄지고 있는 CNN(Convolutional Neural Network)과 RNN(Recurrent Neural Network)을 이용해 이미지 인식과 번역을 각각 구현해본다.
6장, ‘GPU 프로그래밍과 텐서플로 서빙’에서는 GPU 연산 능력을 이용해 텐서플로를 더 빠르게 구동시키는 방법을 다루며, 머신 러닝에 특화된 고성능의 오픈소스 서빙 시스템인 텐서플로 서빙을 통해 텐서플로에 최적화된 개발 환경을 구성해본다.

목차

1장. 텐서플로: 기초
__머신 러닝과 딥 러닝 기초
____지도 학습
________비지도 학습
________딥 러닝
__텐서플로 개요
__파이썬 기초
____문법
____데이터 형식
____문자열
____제어 흐름
____함수
____클래스
____예외 처리
____라이브러리 불러오기
__텐서플로 설치
____맥과 리눅스 배포판에 설치
____윈도우에 설치
____소스코드로부터 텐서플로 설치
____텐서플로 동작 확인
__첫 번째 작업 세션
__데이터 플로우 그래프
__텐서플로 프로그래밍 모델
____텐서보드 사용법
__요약

2장. 텐서플로 기초 연산
__텐서 자료 구조
____1차원 텐서
____2차원 텐서
________텐서 다루기
____3차원 텐서
____텐서플로를 이용한 텐서 다루기
________입력 데이터 준비
__복소수와 프랙탈
____망델브로 집합 데이터 준비
____망델브로 집합의 데이터 플로우 그래프 생성과 실행
____망델브로 집합 시각화
____쥘리아 집합 데이터 준비
____쥘리아 집합의 데이터 플로우 그래프 생성과 실행
____쥘리아 집합 시각화
__그레이디언트 계산
__난수
____균일 분포
____정규 분포
____시드를 이용한 난수 생성
________몬테카를로 기법
__편미분 방정식 풀기
____초기 조건 설정
____모델 생성
____그래프 실행
________연산에 사용된 함수 살펴보기
__요약

3장. 머신 러닝 시작
__선형 회귀 알고리즘
____데이터 모델
________비용 함수와 경사 하강법
________________모델 학습
__MNIST 데이터 집합
____데이터 다운로드와 준비
__분류기
____최근접 이웃 알고리즘
________학습군 제작
________비용 함수와 최적화
________________테스트와 알고리즘 평가
__데이터 군집화
____k-평균 알고리즘
____학습군 제작
____비용 함수와 최적화
________테스트와 알고리즘 평가
__요약

4장. 인공 신경망 소개
__인공 신경망이란?
____신경망 구조
____단일 계층 퍼셉트론
____로지스틱 회귀
________텐서플로 구현
________모델 생성
________세션 실행
________테스트 평가
________소스코드
__다중 계층 퍼셉트론
____다중 계층 퍼셉트론 분류
________모델 생성
________세션 실행
________소스코드
____다중 계층 퍼셉트론 함수 추정
________모델 생성
________세션 실행
__요약

5장. 딥 러닝
__딥 러닝 기술
____합성 곱 신경망
________CNN 구조
________텐서플로를 이용한 CNN 구현
________________초기화 단계
________________첫 번째 합성 곱 레이어
________________두 번째 합성 곱 레이어
________________완전 연결 레이어
________________출력 레이어
________________모델 학습 및 평가
________________세션 실행
________________소스코드
____순환 신경망
________RNN 구조
________LSTM 네트워크
________텐서플로를 이용한 자연어 처리
________________데이터 다운로드
____모델 제작
____코드 실행
__요약

6장. GPU 프로그래밍과 텐서플로 서빙
__GPU 프로그래밍
__텐서플로 서빙
____텐서플로 서빙 설치
________Bazel
________gRPC
________________텐서플로 서빙 의존성 패키지
________________텐서플로 서빙 설치
____텐서플로 서빙 사용법
________텐서플로 모델 학습과 내보내기
________세션 실행
__텐서플로 모델 불러오기와 내보내기
____서버 테스트
__요약

저자소개

저자 잔카를로 자코네(Giancarlo Zaccone)는 산업과학 분야에서 10년 이상 연구 프로젝트를 관리해 왔다. 국립 연구 협회(CNR, the National Research Council)에서 근무하면서 병렬 수치 연산 및 시각화에 관해 연구했다.
현재 컨설팅 업체에서 소프트웨어 엔지니어로 활동하며, 대공 방어 시스템 유지 보수 업무를 맡고 있다.
나폴리 대학교(Federico II of Naples)에서 물리학 석사학위를 받았으며, 로마 라 사피엔차 대학교(La Sapienza of Rome)에서 컴퓨터 과학 석사 2학기 과정에 있다.
팩트출판사에서 『Python Parallel Programming Cookbook』을 출간했으며 링크드인(https://it.linkedin.com/in/giancarlozaccone)을 통해 그와 연락할 수 있다.

도서소개

[텐서플로 입문]은 머신 러닝과 딥 러닝에 관심이 있는 독자들이 텐서플로 예제를 구현해 보면서 쉽게 이해할 수 있도록 구성되어 있다. 기본 파이썬 문법부터 기본적인 머신 러닝 알고리즘(선형회귀, KNN, K-Means), 인공 신경망, 합성곱 신경망, 순환 신경망까지 텐서플로 예제를 통해 자세하게 설명한다. 텐서플로의 중요한 특징 중 하나인 텐서보드를 소개하고 GPU를 사용한 텐서플로 프로그래밍과 머신러닝으로 학습한 모델을 실무에서 활용할 수 있도록 환경을 제공하는 텐서플로 서빙까지 다룬다. 텐서플로를 통한 머신 러닝과 딥 러닝 구현의 기초를 다지는 데 큰 도움이 될 것이다.

교환 및 환불안내

도서교환 및 환불
  • ㆍ배송기간은 평일 기준 1~3일 정도 소요됩니다.(스프링 분철은 1일 정도 시간이 더 소요됩니다.)
  • ㆍ상품불량 및 오배송등의 이유로 반품하실 경우, 반품배송비는 무료입니다.
  • ㆍ고객님의 변심에 의한 반품,환불,교환시 택배비는 본인 부담입니다.
  • ㆍ상담원과의 상담없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
  • ㆍ이미 발송된 상품의 취소 및 반품, 교환요청시 배송비가 발생할 수 있습니다.
  • ㆍ반품신청시 반송된 상품의 수령후 환불처리됩니다.(카드사 사정에 따라 카드취소는 시일이 3~5일이 소요될 수 있습니다.)
  • ㆍ주문하신 상품의 반품,교환은 상품수령일로 부터 7일이내에 신청하실 수 있습니다.
  • ㆍ상품이 훼손된 경우 반품 및 교환,환불이 불가능합니다.
  • ㆍ반품/교환시 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한될 수 있습니다.
  • ㆍ스프링제본 상품은 교환 및 환불이 불가능 합니다.
  • ㆍ군부대(사서함) 및 해외배송은 불가능합니다.
  • ㆍ오후 3시 이후 상담원과 통화되지 않은 취소건에 대해서는 고객 반품비용이 발생할 수 있습니다.
반품안내
  • 마이페이지 > 나의상담 > 1 : 1 문의하기 게시판 또는 고객센터 1800-7327
교환/반품주소
  • 경기도 파주시 문발로 211 1층 / (주)북채널 / 전화 : 1800-7327
  • 택배안내 : CJ대한통운(1588-1255)
  • 고객님 변심으로 인한 교환 또는 반품시 왕복 배송비 5,000원을 부담하셔야 하며, 제품 불량 또는 오 배송시에는 전액을 당사에서부담 합니다.